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Abstract

The CALIS procedure in SAS/STAT software is a general structural equation modeling (SEM)
tool. This workshop introducesthe general methodology of SEM and the applicationsof
PROC CALIS. Background topics such as path analysis, confirmatory factor analysis,
measurement error models, and linear structural relations (LISREL) are reviewed.
Applicationsare demonstrated with examplesin social, educational, behavioral,and
marketing research. More advanced SEM techniques such as the full information
maximum likelihood (FIML) method for treatingincomplete observations, robust
estimation, and diagnosticsfor outliers and leverage pointsin the SEM context are also
covered.

This workshop is designed for statisticians and data analysts who want an overview of SEM
applicationsusing the CALIS procedurein SAS/STAT 9.22 and later releases. Attendees
should havea basic understanding of regression analysisand experience using the SAS
language. Previous exposure to SEM is useful but not required. Attendees will learn how to
use PROC CALIS for (1) specifying structural equation models with latentvariables, (2)
interpreting model fit statistics and estimation results, (3) using the FIML method for
treatingincomplete observations, (4) and detecting outliers and leverage points.

Citation of this workshop and notes:

Yung, Y.-F. (2014). Structural Equation Modeling Using the CALIS Procedure in SAS/STAT®
Software: Basic and Advanced Topics. Statistical tutorial presented at the Michigan SAS
Users Group Meeting, May 20, 2014.



SAS/STAT 9.22 or later
1S assumed
for this workshop

In this workshop, SAS/STAT 9.22 (TS2M3) or lateris assumed for the CALIS procedure.Some
of the code might work with PROC TCALIS (an experimental procedure) in SAS/STAT 9.2
(TS2M2). However, there is a major syntactical difference between PROC TCALIS and PROC
CALIS. In PROC TCALIS, the parameter specification for each path in the PATH statement
must not be preceded by an equal sign. But this equal sign is required in PROC CALIS when
you specify parameters. Also, PROC TCALIS does not support the extended path
specifications (for variances, covariances, means, and intercepts) and multiple-path
specifications when you use the PATH modeling language, which is the main focus of
today’stalk. PROC TCALIS also does not support FIML, residual diagnostics, and robust
estimation.



| Causal Model, Prediction, and Path Diagram

X causes Y
X predicts Y

Linear regression equation
Y=bX+ey

Path diagram

_______________________________

This is the essential repr'esen'raﬂ-c-:_ri__jl
. Often the error term is omitted,. |

The central idea of structural equation modelingis the study of causal relationship between
variables. For example, you havean X and a Y variable. X is the cause of Y, or doing X results
inY. To give a more realisticexample: eating more vegetables (X) brings down your
cholesterol level (Y). However, this causal structure is only an idealized framework. In
making causal inferences, you must have isolated all other background variables and
established temporal sequence of the variables. Because of the complicated philosophical
issues involved in making causal inferences, in general SEM would avoid claiming causal
inferences. In this sense, all the techniques described in this workshop are statistical in
nature.

A predictor-outcome framework might be more appropriate philosophically. The semantic
is now “ X predicts Y”. Mathematically and statistically, this idea is represented in the
simple linear regression model, as shown in the linear regression equation:

Y=b*X +e.

The path diagramfor this representation isalso shown in the slide, where b is called the
effect, regression coefficient, or path coefficient. Notice thatan error term is added to
show that the prediction of Y from X is not perfect, which is usually true in practice.
Essentially, the predictor-outcome framework is represented by the Y& X path in the path
diagram.



Structural Equation Modeling versus
Regression Analysis
= More variables : A | Group 1 1
= More equations i | - __ W :
= Correlated errors N 72 L —w - -
= Direct and indirect effects S
= Latent variables P
= Parametric constraints " N 6 SRl
= Multiple-group analysis i * e ) |
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What are the differences between SEM and regression analysis? What more can SEM offer
than the linear regression analysis?

You can view SEM as a much more complicated system for multiple predictor-outcome
relationships. SEM can handle the following situations where linear regression analysis is
of limited usefulness:

1. More variables(not just X and Y, but you can also add W and Z into the path diagram).

2. More equationsor functional relationships (not just XY, but you can also analyze
W->Z simultaneously).

3. Correlatederrors: system of equationscan have correlated errors . For example, the
double-headed arrow betweenY and Z.

4. Direct and indirect effects: X has a direct effect on Z and an indirect effect on Z via its
effect on W. Thatis, X=>Z and X>W=>Z are direct and indirect effects of X on Y,
respectively.

5. Latentvariables. For example, the latentvariable LV in the path diagram has effects on
X and W. In SEM, latentvariables are represented by ovals or circles, while observed
variablesare represented by rectangles or squares.

6. Parametric constraints. For example, two path coefficients or effects labeled as ‘a’ in
the upper path diagrams are constrained to be equal.

7. Multiple-group analysis. For different groups of populations, the overall structure of the
model are the same, but the path constraints could be different---while the constrained
effect in Group 1 is denoted as ‘a,’ the constrained effect in Group 2 is denoted as ‘b,
which will have a different estimate than that for ‘a’ in Group 1.



- Other Names or Closely-Related Analyses for
Structural Equation Modeling (SEM)

= Path analysis (usually for observed variables only)

= LISREL model (Joreskog 1973, Keesling 1972, Wiley
1973)

= Covariance structures analysis
= Analysis of moment structures
= Confirmatory factor analysis

= Causal modeling

= CALIS: Covariance Analysis of Linear Structural
Equations

SEM has a lot of synonyms (or closely-related statistical techniques) in the field: Path
analysis (attributed to Sewall Wright), LISREL model (JKW model), covariance structures
analysis, analysisof moment structures, confirmatory factor analysis, causal modeling, and
etc. In terms of the statistical methodologyinvolved, all these techniques are more or less
the same.

PROC CALIS, which stands for covariance analysis of linear structural equations, is a
software that was designed to handleall these analyses underthe umbrella term SEM.

Hopefully,one day PROC CALIS would also be remembered as a synonym of SEM.



A Very Brief History of PROC CALIS

= Qlder versions: before SAS 9.2

= TCALIS (SAS 9.2, 2008): experimental version

* “New” CALIS (SAS 9.22, 2010): PATH modeling
language, multiple-group analysis, mean structures,
name-free approach to parameter specifications, and
much more

= Current version (SAS/STAT 13.1, 2013): Full information
maximum likelihood, robust estimation, case-level
residual diagnostics, and path diagram
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Let us start with a brief history of PROC CALIS. In the eighties, Wolfgang Hartmann designed
and developed the first version of PROC CALIS. The statistical and mathematical model was
greatly influenced by the COSAN model proposed by R. P. McDonald. In fact, there was
evidence that Cosan, instead of Calis, might have been proposed as the name of the
procedure. The most popularsyntaxin PROC CALIS, however, was under the influence of
the EQS program by Peter Bentler. The LINEQS syntaxin PROC CALIS for model specification
is basicallyam emulation of the syntax of the EQS program.

I (Yiu-FaiYung) picked up the development of the software around 2000. | actually rewrote
the mathematical foundations of the software. | kept the optimization techniquesand
initial estimation techniques so that the estimation results of “new” CALIS is compatible
with the “old” CALIS. In 2008, an experimental version called TCALIS was released. Since
then, | have modified the syntaxa little more, fixed some major bugs, and added some new
features.

The SAS 9.22 version of the CALIS procedure was released in 2010. If you have used PROC
CALIS before, you will notice one major change: the emphasis on the PATH modeling
language. You can see examples using the PATH statement everywhere in the PROC CALIS
documentation. Other noteworthy new features are: multiple-group modeling, redesigned
mean structure analysis, and the name-free approachto parameterspecifications.
Certainly, there are many more new features than these, as you will learn from this
workshop and elsewhere.



Structure of the Workshop

= First Part: Basic Modeling

A brief description of the process of SEM

The PATH modeling language in PROC CALIS
Specifying models and interpreting results
Extended PATH modeling language

LISMOD - a language tailored to LISREL users

= Second Part: “Advanced” Modeling
Multiple-group analysis

Analyzing direct and indirect effects

Creating Path Diagrams

Testing specific hypotheses

Model modifications

Full information maximum likelihood estimation
Case-level (Observation-level) residual diagnostics

... 6Sas E=.

The first part of the workshop is about the basic SEM modelingusing PROC CALIS. | will
describe the research process of SEM briefly. Then | will introduce the PATH modeling
languagein PROC CALIS by using a simple linearregression example. Next, | will move on
to more complicated examples that analyze confirmatory-factor models. | will use PROC
CALIS in these examples to show how you can specify SEM models by the PATH modeling
language, in relation to the path diagram representations. | will show you how to interpret
the results generated by PROC CALIS. | will end the first part by showing you how a LISREL
model can be specified by the LISMOD statement in PROC CALIS.
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The second part of the workshop is about “advanced” modeling---relatively speaking. | will
show how multiple-group analysiscan be donein PROC CALIS. Other importanttopics such
as direct and indirect effect analysis, testing specific hypotheses, and model modifications
are discussed. Two newest SEM techniques, FIML estimation and case-level residual
analysis, are also described.



- Emphases of the Workshop

= |ntroducing the structural equation methodology
and applications through examples — What is
SEM?

* Analyzing structural equation models with PROC
CALIS — How to do SEM?

There are two emphases of this talk.

One, | wantto show you an overall picture of SEM. This addresses the “whatis SEM?”
qguestion.| will not give you a technical definition, but | will show you SEM examples so that
you will have a “real” feeling about the applications of SEM.

Two, | want to show you how to use PROC CALIS. This addresses the “How to do SEM?”
guestion.| hope that in the end of the workshop, you will find that PROC CALIS is very
useful for modeling structural relationships.



[llustrating the Process of
Structural Equation Modeling

: 9sas  Hs.

To give you a realisticidea about the scope of application of structural equation modeling, |
will first describe an elaborate research example.



- A Structural Equation Model of Web-Surfing
Behavior (Novak, Hoffman, & Yung 2000)
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This is a structural equation model about web-surfing behavior. The researchers hypothesize
that “Playfulness” of a web-site enhances the future use (“Future Use”) of the same web-
site. However, the theory does not end there. The researchers also hypothesize what
makes a web-site to be perceived as playful. Three additional constructsare hypothesized in
the path diagram: “Control” (of the web-page), “Arousal” (of interest), and “Focused
Attention” are determinants of “Playfulness.” In fact, the researchers hypothesized even
further. For example, they use “Start Use” (when the users started to use computers) and
“Time Use” (how often they use computers) as remote “causes” of a lot of latent constructs
in the path diagram. In sum, this is a relatively large SEM that theorizes complicated
relationshipsamong constructs that predict the future use of a web-site.

In this path diagram, the oval shapes represent latentvariables, which are not measured but
serve as useful constructs in the model (e.g., “Playfulness”). The rectangles represent
measured or observed variables (e.g., “Start Use”, “Time Use”, “Future Use”). In order to
analyze the latent constructs, some measured variables (or indicators) for the latent
constructs are needed. In the path diagram, those small unlabeled rectangles are measured
indicatorsfor their latent constructs. In this research, these measured indicatorsare rating
responses on a questionnaire. See the next page for examples of these items.

Given this path diagram for the theory about web-surfing behavior,an SEM software fits the
model based on the observed data and informs you the model fit and the estimates of the
effects (path coefficients) in the path diagram. All numbers in this path diagram are effect
estimates. In addition, the SEM software tells you the significance of these estimates. If the
model does not fit the data well, the SEM software suggests ways to improve the model.

10



- Examples of Items

Playfulness
* The event was very playful.
= The event was fun.

Future Use
o | would like to engage the same activity in the future.

Time Distortion Items
o The experience overwhelmed other senses and thoughts.

o | forgot about my immediate surroundings when browsing the
web-page.

Control
o | felt in control.
o The web-page design allowed me to control the interaction.

GSas B

This slide shows the examples of the items used in the research. All these are rating scales.
Respondentsindicate whether they agree or disagree on a 7- or 5-point scale for each item.

11



- Key Features of SEM

= Analyzing complicated relationships among variables
= Path diagram representations for models

= Ability to handle |latent and observed variables
simultaneously

= Testing the model fit and significance of the parameters

= Suggesting ways to improve the model

% GSas B
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To summarize, here is a list of the key features of SEM:

. Analyzingcomplicated relationshipsamong variables

. Path diagram representationsfor models

. Abilityto handlelatent and observed variablessimultaneously
. Testing the model fit and significance of the effect parameters

. Suggesting ways to improve the model

12



Basics: A Simple Regression
Model and the PATH
Modeling Language

0sas .

Learning SEM can be a very complicated process. Let us start with a simple examplein
linear regression.

13



i A Simple Linear Regression Model

y=bx+ey

= y: outcome variable

X: predictor variable

ey: error term

b: effect or regression coefficient

Assumption: Variables are centered.

=.t-n.m ! SSaS s

To introduce the PATH modelinglanguage in PROC CALIS, a simple linearregression model
is used. In the regression equation, y is the outcome variable, x is the predictor variable,
e_yis the error term and b is the effect or regression coefficient. The regression model
written in this form assumes that x and y are centered with means zero. But this
assumption is not necessary and will not affect the generality to un-centered variables.

When you use PROC CALIS, you can input raw data or the covariance matrix of the
observed variablesfor analysis. There is no need to center your variables.

14



- Measures of the Number of Hen Pheasants

Fuller (1987) p.34

= y:average of the number of birds in August
= X :average of the number of birds in Spring (April/May)

Averages were based on the number of birds sighted by
15 trained observers

Goal: How many birds will survive 3 months?

On p.34 of Fuller’s book “Measurement Error Models”, he describes a data set about the
countingof hen pheasantsin April and August. Fifteen trained observers counted the
number of birdsin the two occasions. Y is the number of birds in August and X is the
number of birdsin April. The goal of the linear regression is to predict the number of birds
in August (Fall) by the number of birdsin April (Spring).

15



- Regression Analysis by PROC REG

data hens;

input y x G@;

datalines;
8 9 &6 6.6 9.8 12.3 10.8 11.9 9.7 11.9 9.3 12
9.2 9.6 6.9 7.5 8.1 10.9 8.7 10.4 8.7 10.2 7.4 7.4
10.1 11 10 11.8 7.3 8.2

proc reg data=hens;
model vy = x;

run;

To conduct a linear regression analysis, you can use a SAS procedure called PROC REG. The
syntaxis quite simple. First, define your data set. Second, call PROC REG with the interested
data set specified in the PROC REG statement. Then, the model statement specifies thaty =
X, which means thaty is predicted by x. No error term needs to be specified, although
PROC REG does assume that predictionis not perfect so that the nonzero error varianceis
assumed in the regression.



- Results Obtained from PROC REG

Parameter Estimates

Paramster Standard
Variable DF Estimate Error t Value
Intercept 1 2.14227 0.84513 2.53
3 1 0.64941 0.08275 7.85
;_ b _l:—’

Given a base survival of 2.14 birds, every additional bird in Spring predicts a
0.65 bird surviving in August.

This table shows the essential results from PROC REG. The output shows an estimate of
0.65 for the regression coefficientb. The intercept estimateis 2.14. PROC REG also shows
the standard error estimates and the t values for judging statistical significance. Both
estimates are statistically significant.

An interpretation aboutthese regression estimates is this: “Given a base survival of 2.14
birds, every additional bird in Spring (April) predicts a 0.65 bird survivingin Fall (August).”

17



i Regression Equation, Path Diagram, and the PATH
Modeling Language

y = b X + ey

‘ Outcome ‘ ‘ Parameter ‘ ‘ Predictor ‘
I I
! -l
b ;
y i X
PATH g === X = b;

Path ‘ Path Relation Parameter (optional) ‘
Statement

=.t-n.m ! SSaS s

As shown previously, you can represent the linearregression model by the path diagram,
which is also a representation scheme for SEM.

Here is what you do to specify a simple linearregression model in PROC CALIS. You use the
PATH statement to specify the path in the regression model. In this case, it is just Y<===Xin
the PATH statement. Optionally, you can denote the corresponding path coefficient
parameter. For example, you can put “= b” at the back of the path to denote the parameter
name for the regression coefficient or effect.

18



- Regression Model Specified by PROC CALIS

proc calis data=hens;
path
y <=== xn;

run;

% GSas B

'Y 1

This is the entire PROC CALIS syntax for the simple linear regression model. Isn’t that easy
and simple?

Again, you do not need to specify any error term (and the correspondingerror variance) for
the regression (or the path)as PROC CALIS assumes the predictionis not perfect by default.

19



| Results from PROC CALIS for the Pheasant Data

PARIH List

Standard

Path- Parameter Estimate Error t Yalue Br > |t

¥ = x _Parml 0.64941 0.07974 B.1441 <.0001

| The seme estimate
(Nt bERECRESEN @& 00 oo

| Default variance

Variance Parameters | parameters
Yariance o " standard
Type Yariable Parameter Estimate Error L value Br > |t]
Exogenous x Acddl 3.62124 1.36870 2.6458 0.0082
Error ¥ _Bdd? 0.32233 0.12183 2.6458 0.0082

This slide shows the output results from PROC CALIS.

The estimated effect of x on y, denoted as y <===x in the output, is 0.65, which is the
same as that in the PROC REG results. Because you did not name this regression coefficient
parameter (but you specify the path nonetheless), PROC CALIS generates a unique
parameter name called _Parm1 for it. The standard error estimate and the t value are a
little bit different from that of the PROC REG results. This is because different degrees of
freedom for computing the standard errors are used in the two approaches.

In PROC CALIS, it also includesresults for two more parametersin the model. The variance
of x and the error variance of y are treated as model parameters. Their estimates are also
shown in the PROC CALIS results. Note that PROC CALIS creates default parameter names
for these defaultvariances even though you did not specify them. In this example, these
variance parametersare named “_Add1” and “_Add2”, respectively. In fact, all default
parameters added by PROC CALIS havethe prefix “_Add”.

20
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| Optional Specification with Parameter Names
i | Without an explicit errorterm |
proc calis data=hens; 1 H
1 1
] ; b : }
Bath erv.y ¢ y k % " N var x|
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! }
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- | Equivalent representations |—
v = errv_y: _____l _____________________________
run; /’F e
r \ 3 v
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explicitly in PROC CALIS. | 1 ;
! ]
H > !
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l\ | With an explicit error term | :
by ,
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You could name all the parametersin PROC CALIS by putting your preferred names. This
slide shows a complete specification of the regression model.

In the path diagram at the top right corner, the parameters are shown in red. In the
regression model, b is the regression coefficient, var_xis the variance of the predictor
variablex, and errv_y is the error variance of y. This path diagram representationis
equivalentto the one shown at the bottom right corner, where an explicit error termis
attachedto Y. The error term is represented by an oval shape because it is treated as a
latentvariable. This representation has the same set of parameters, only thaterrv_y is now
attachedto the error variable directly.

You can specify all these parameters explicitlyin PROC CALIS. In the left panel of the slide,
the parameterb is specified after the y <=== x path, separated by an equal sign. To specify
the variances or error variancesin the model, you can use the PVAR statement. For
example, “x = var_x” means that the variance of x is a parameter called “var_x".

Notice that naming parametersis entirely optional. For this example, naming parameters
appearsto serve only as an illustration. Later in this talk, you will find situationswhere the
use of parameter names is not only useful, but also necessary. The capability of naming
parameters means that you can have more control on specifying your models.

21
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As shown in this slide, the numerical results from PROC CALIS with explicit parameter
names specified are the same as those without using parameter names. The only

difference is that now you can use these parameter names to locate the corresponding
results directly.



_ Keys to the PATH Modeling Language

As easy as drawing a path diagram

PATH statement specifies the functional relationships —
required specification

PROC CALIS sets variances and error variances by
default — optional specification

Naming free parameters is optional

Most of the time, you only need fo specify the functional relationships by
using the PATH statement.

0 Gsas B

So far, | have shown you that:

1. The PATH modelinglanguageis as easy as drawing a path diagram.

2. You can use the PATH statement to specify the paths in path diagram, with or without
specifying the parameter names for the path coefficients.

3. You can also specify the variance or error variance parameters explicitly. In most
practical applications, variances and error variances have already been set by default
and you do not need to worry about specifying them. The essential part of the CALIS
syntax is the paths specified in the PATH statement.

4. Namingparametersis optionalin PROC CALIS.

23



- Measurement Errors in Predictors

Bird counting might involve measurement errors in x

= X =fx+ ex

fx : true score, but not observed

= X :observed, but with measurement error ex

Let us make a little step forward to show a special SEM feature that linear regression
cannot handle easily.

In the bird countingexample, we did not take into account that bird counting couldinvolve
measurement errors. In the current context, the measurement error in bird countingcould
be due to the environmentfactorsin the forest: obstruction from the tree branches,
“biased” angles from the bird observers, and etc.

Mathematically, you can hypothesize a variable called fx to represent the “true” bird
counts. The observed number of birds x is the sum of fx, the true score, and ex, an error

term.

What you got from the datais x, the observed fallible score. However, ideally, you would
want to use fx, the true score in your regression analysis.

24



A Measurement Error Model for the Pheasant Data

= Structural Equation
y=bfx+ey

= Measurement equation
X = fx + ex

= Can you estimate b?

= Problem: The measurement equation introduces an
additional parameter: Var(ex) (variance of ex or error
variance of x)

. 6sas E=.

The precedingidea is formalized as the following structural equation model with a latent
variablefx.

In the structural model, y is now predicted from fx, the true score, in the linear regression
model. This so-called structural equation takes the role of the original linearregression
equation---only nowyou are supposed to have a better model by using the measurement
error-free variable fx as the predictor. In the measurement model, you hypothesize that the
observed variablex is obtained as the sum of fx and an measurement error term e_x.

Canyou estimate b with the latentvariable fx in the structural equation? Will it give you
different results than that of the ordinary regression analysis? This answer is yes.

But a technical problem encounteredin measurement error model must be dealt with first.
Thatis, the measurement equationintroducesone additional parametersin var(ex)---error
variance of x. We must have a way to know the approximate amount of this error variance
in order to estimate other parametersin the model. More technically, thisis an
identification problemin the context of SEM. In a loose sense, this means that your model
estimates more parametersthan would be allowed by the given information of the data
set. Consequently, the parametersin the model are not estimable.

In general SEM, using three or more observed indicatorsfor each latent factor (true score)
would generallyresolve this kind of identification problem. This will be described laterin
the context of confirmatory factor analysis. For the current example, Fuller suggests a
useful way to access the amount of measurement error in x so that identification problem
vanishes.

25



i Path Diagram Representations
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Before | discuss Fuller’s solution, let us compare the linearregression model with the
measurement error model by use of path diagram. This demonstrates why the
measurement error model has one more parameter to estimate.

In the left panel, the path diagram for the simple linear regression analysis is shown.

In the right panel for the measurement error model, we still have x and y as the observed
variables. But now we have a latent variable fx that takes the role of the predictor of y.
Var_x in this model now represents the true variance of the predictor fx. The new
parameterin the measurement error model is errv_x (error variance of x). With this
additional parameter, we need to make additional assumption to estimate the model
parameters.

26



_ Constraining the Error Variances

= Bird counting is more accurate in fall (y) than in spring (x)

= |n an independent study, error variance (for x) in spring is
six times as much as that (for y) in fall

= Fuller's suggestion: Var(ex) = 6 Var(ey)

errv X =6%*errv y

 §sas B
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Fortunately, we have a reasonable assumption about the relative size of the measurement
error variances of x in the model. This slide follows Fuller’s solutionin his textbook.

This assumption is based on the fact that bird countingin Fall is more accurate than thatin
spring. The reason is that the fallen leaves in Fall makes the counting of birds less
obstructive.

The assumption was validated by an independent study about the relative error variances
inxandiny. In Fuller’s textbook, he reported that this ratio is about 6. Mathematically,
therefore, we may set Var(ex) = 6*Var(ey). That s, error variance for x is six times as much
as the error varianceof y. In running PROC CALIS, you need to incorporate the following
parametric constraintin the modeling: errv_x=6*errv_y.

27



- A Measurement Error Model with a Constraint
for the Pheasant Data

proc calis data=hens;

e

path ’ 3
o \
v <=== faxr =b, : :
1
1

fr ===> =1 P — — " 1
b4 b4 : b ' :
Bvax oy — & — x | |
1
i e I
h's = errv_y, H [ 4 r 4 s 5 !

1 J \ /
fx = var_=x, ! o N AR !
1oern.y var X ern/ X :
x = errv_H; : - —_ —_ H
I
i I

= * . 1

errv_x 6 errv_y; ._\ l|
: i

run; N \ /

The required constraint is specified
os a SAS programming statement.

aany | SSaS Pon
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It turns out that it is pretty straightforward to specify this kind of parametric constraintin
PROC CALIS. You just simply add one more line of code to represent this relationship, as
shown in the SAS code on the slide. In the SAS literature, this line of code is called a SAS
programming statement, which is used extensively in the DATA step of SAS. You can use as
many SAS programming statements as you want to describe the relationships of the
parametersin the model. With this statement for constrainingthe error variances, your
model is identified.
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- Measurement Error Model Results for the Pheasant Data

PATH List
Standard
-————-—pPath--——-——- Parameter Estimate Error t value Pr > |t|
b4 i tx b 0.75158_ 0.09228 B.1443 <. 0001
x —  x 1,00000 o T

A lurg's'r estimated effect than the one '
estimated without taking the measurement !
error into account (0.649) |

Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t walue Pr > |t
Error ¥ errv_y 0.08205 0.03101 2.6458 0.0082
Exogenous fx var x 3.12893 1.361680 2.2916 0.0216
Error x errv_x 0,49231 0.18608 2.6458 0.,0082

Six times as much os the estimate for errv_y

With the measurement error model, the regression coefficient b is now 0.75. The
represents a larger effect than 0.649, which you obtained from the linear regression model
without taking the measurement error in x into account. Therefore, the previous regression
analysis underestimated this effect because it failed to incorporate the measurement error
into the model. However, with SEM, you can easily incorporate the measurement errors
into the analysis.

Estimates of the variances and error variances are shown in the next table. You can see that
the constraint specified in the PROC CALIS syntaxis honored in the estimation. The error
variance estimate of x is 0.49, which is indeed six times as much as the error variance
estimate of y, which is 0.08.
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_ Some Features of the PATH Modeling Language

= PATH statement for specifying paths or relationships

= PVAR statement for specifying variances and error
variances

= PCOV statement for specifying covariances and error
covariances (to be shown)

= Parameter dependency can be specified by SAS
programming statements. For example,

parml = 4 * parm?2 + expi{parmd) ** parmé;

0 Gsas B

This slide summarizes some features of the PATH modelinglanguage.

1. Itisas straightforward as drawingthe paths--- you can specify latentand observed
variablesin the same way.

2. You can use the PVAR statement to specify variances or error variances (double-headed
arrows attachedto individual variablesin the path diagram).

3. You can use the PCOV statement to specify covariancesor error covariances (double-
headed arrows attached to pairs of distinct variablesin the path diagram).

4. You can specify parameter dependency by using the SAS programming statements
directly. Indeed, even very strange and complicated (continuous) parametric functions
are supported in PROC CALIS.
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A Confirmatory Factor Model

GSas B

We now move on to a little more complicated class of models called confirmatory factor-
analysis (CFA) models.
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| Political Democracy Data

= Bollen (1989) Chapter 7

= Two latent factors: political democracy in 75 developing
countries in 1960 and 1965

= Four indicator measures for the latent factors in each
year:

o  Freedom of press (Press60, Press65)

o Freedom of group oppositions (Freop60, Frecp65)

o Fairness of elections (Fair60, Fairés)

o  Elective nature of the legislative body (Legis60, Legis65)

= Purpose of the confirmatory factor analysis: Validate the
measurement indicators

This example is based on an examplein Chapter 7 of Bollen’s classic textbook: Structural
Equation Modeling.

In this example, two latent factors for measuring political democracy in 75 developing
countriesin 1960 and 1965 were hypothesized.

These two latent factors are not observed, but they have some related observed variables
that serve as indicators. In each year, you measure four variablesto gauge the political
democracy: freedom of press (Press), freedom of group oppositions (Freop), fairness of
elections (Fair), and elective nature of the legislative body (Legis).

The purpose of the confirmatory factor analysisis to validate these measurement

indicators statistically. We will discuss what would be considered to be a validation of these
measurement indicators.
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- A Confirmatory Factor Model for the Political
Democracy Data (Implicit Error Representation)
. _~ Press60 :
i) - 4
—~ Freop60 |_
o~ Dem60 <— : ‘-
N Fai0 |
. N Legis60 * )
-~ Press65
\ ——+ Freop65 ‘__","
« DemB5 [ _ _7‘_
. T Faie5 |
N4 N Legis65 :

This path diagram shows the hypothesized confirmatory factor model.

In the path diagram, two latentfactors are represented by two ovals. Dem60 is the political
democracy in 1960 and Demé65 is the political democracy in 1965. They are linked to the
respective measured variables, as shown in the path diagram. These single-headed paths
represent the typical factor-observed variable relationships.

The double-headed arrow that connects Dem60 and Dem65 represents the covariance
parameter between the two latent factors. It means that the two factors are correlated.
Double-headed arrowsthat are attached to Dem60 and Dem65 individually represent the
variance parameters of the two factors. In the model, you fix these variancesto 1 so that
the scales of the factors are identified. Thisis conventionally done because the scale of
latent factors is arbitrary (you do not measure latent variablesdirectly so that they could be
defined on any unit of measurement).

The double-headed arrows that are attached to the observed variablesrepresent error
variances. They signify the fact that the factors in the model do not account for 100% of the
variances of the observed variables. The error variancesare the unique part of the
variancesin the observed variablesthat are not due to their relationshipswith the factors
in the model.
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- A Confirmatory Factor Model for the Political
Democracy Data (With Explicit Error Representations)

1
~J _~ PressB0 ——(e1) )
£y - A
e #  mmm— =
./’/J __—~ Freop60 [+—e2) )
o~ Demg0 i-f"_:——-___ : i
/ S —+  Fairé0 == e_3 ) D
/ ) ay—————P :
f ~ Legis0 f——{e4 ]
| A
|| .. B x
'\ _~ PressBs «——{e5) )
.~ Freops ~——(6))
“a[ Dem65 < ——— &} .
4 Famld ——er) )
B | e ———— -
\\‘u,»" 1 | Leg|565 ..._ e8 ‘,‘/\f

This is an alternative path diagram representation with the use of explicit error terms.
Notice that the double-headed arrows for the observed variables now shift to the error
terms. This path diagram representationis shown here only for illustration purposes. In
this workshop, | mostly rely on the path diagram representation that does not use explicit
error terms.



—;l - - L]
~ Basic Confirmatory Factor Model for the Political
|
Democracy Data

proc calis data=polidem; / '.-'-.1‘ A Fress60 ._‘:’

path . } L5 7‘-
Dem60 ===> Press6&0, / _ - Freop60 )
Dem60 ===> Freopél, ~ D po s

T emb0 <= =

Dem60 ===> Fair&0, o e e 50 )
Dem60 ===> Legis&0, / - _ Falb «—
Dem65 ===> Pressth, | N \\"-.._‘ |
Dem65 ===> Freopts, I- ™ Legis60 i
Dem65 ===> Fair65, :
Demé5 ===> Legis6t5; I o

pvar -. _~ Pressé5 | )
DemS0 = 1, Demb5 = 1, '-\ = /
Press60 Freop6( Faire0 ! / e
Legis60 Pressé5 Freop60 E = FIReph -
Fair65 Legis65; ™\ e _ T~

peov S . Fairgs '
Dem60 Dem65; ) B

run; ot ™ Legis65 | )

Specifying the CFA model is not much harder than the previous measurement error model.

Basically, you only need to specify more paths for the CFA model.

In the PATH statement, you specify all the single-headed paths (arrows) in the path
diagram.

In the PVAR statement, you specify all double-headed arrows that are attachedto
individual variables. PVAR actually stands for partial variance---you can specify the
variances and error variancesin this statement. “Dem60 =1"” means that the variance of
Dem60 is fixed to one. Similarly for “Dem65=1". The eight observed variable are specified
in the PVAR statement to signify that their error variances are free parametersin the
model.

In the PCOV statement, you specify pairs of variablesthat have covariances or error
covariances as free parametersin the model. In the current path diagram, Dem60 and
Dem65 are correlated and so they are specified in the PCOV statement.
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Error Variances, Variances, and Exogenous
Covariances Are Free Parameters by Default

Specifying All Variance and
Covariance Parameters

Default Variance and Covariance

Parameters in Effect

proc calis data=polidem; proc calis data=polidem;
path path
Demé) ===> Press60, Demé) ===> Pressél,
Dem&0 ===> Freop6l, Dem60 ===> Freop&0,
Dem60 ===> Fairé0, Dem60 ===> Fairé60,
Dem60 ===> Legisé0, Dem60 ===> Legiséd,
Dem65 ===> Pressés, Dem65 ===> Press6b,
Dem65 ===> Freop&b, Dem65 ===> Freops5,
Dem65 ===> Fairés, Dem65 ===> Fairé5,
Dem65 ===> Legiséh; Dem65 ===> Leqgissh;
pvar pvar
_Dem60 = 1, Dem65 =1, Dem60 = 1, Dems5 = 1;
Press60 Freop6l Fairé0 run;
Legisé0 Press6b Freop65
Fair65 Legisé65;
poov
Dem60 Dem65;
run;

_Eesz ooul;:l have been set

To make model specification more efficient and error-free, PROC CALIS employs default
free parametersin the model. These defaultfree parameters are set because they are
commonly employed in practice.

For example, because predictionsof outcome variablesare usually not perfect, the error
variances are free parametersby default. This means that all the PVAR specifications for
the observed variablesare not necessary because PROC CALIS would have treated them as
free parameters by default.

Similarly, the variances of Dem60 and Dem65 and their covariance are default free
parameters because they are assumed in most practical applications. In the current
example, this means that the PCOV statement specification for the covariance between
Dem60 and Dem65 is not necessary.

However, because the variances of Dem60 and Dem65 are fixed to 1 (for identification of

the latentvariable scales), they must be specified explicitlyin the PVAR statement.
Otherwise, these variances would have been treated as free parameters by default.
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Estimates of Path Coefficients (Loadings) for the
Political Democracy Data

PATH List
Standard
==mmmme===Path==—mmee== Parameter Estimate Error t value Pr > |t
Deamb == Prass60 _Parm0l 2.20567 0.25122 8.7800 =, 0001
Deméd —=> Freopbd _Parm02 3.00132 0.39735 7.5533 <. 0001
Dem&0 =—=m Fair60 _Parm03 2.31033 0.34026 6. 7699 <. 0001
Demb0 — Legisol Parm04 2.09483 0.31582 9. 1662 <. 0000
Dem6s — Presseh _Parm05 2.047%0 0.25930 7.8977 <. 0001
Dembs ==> Freopbh _Parm06 2.68003 0.33258 6.0583 <. 0001
Dembh == Fairéh _Parm07 2.70879 0.31804 8.5171 <. 0001
Dembh —_— Legishh _Parm0B 2.76604 0.30830 B.9719 <. 0001

All path estimates are significant. |

... gsas E=.

This table shows the estimates of path coefficients from PROC CALIS.

In the factor analysisliterature, these path coefficients are also called loadings. To validate
the relationships between the democracy factors and the observed variables, the t-values
must be examined for statistical significance. Using normal approximation, t values with
their absolute values bigger than 1.96 are significantly different from zero.

In a typical factor-analysis study, you would want all these t-values to be significantin order
to claim nonzero factor-variable relationships. An insignificantt-value means that the
correspondingvariableis notan indicatorfor the purported factor. Insignificant t-values for
path coefficients would challenge the validity of your factor model.

For this example, all path coefficients are statistically significantand so all factor-variable
relationshipsare well-established.



. . g
- Estimates of Variances for the Political Democracy Data
Variance Paramoters
Variance Standard
Type Yariable Parameter Estimate Error t Walue Pr > |t
EXogencus Deméb 0 1.00000
Dembés 1.00000
Error Pressal _Parmi9 2.01359 0.410406 4.9055 <. 0001
Freoptl _Parml0 6.5718% 1.20964 5.4329 <, 0001
Fairg0 _Parmll 5.42661 0.96546 5.6208 <, 0001
Legisal _Parml? 2.83887 0.61417 4.6223 <. 0001
Press65 _Parml3 2.63180 0.49311 5.3371 <. 0001
Freopbh Parmld 4.19276 0.719422 5.2791 <, 0001
Fairgh _Parmls 3.46180 0.68155 5.0793 <. 0001
Laegiseh _Parmlé 2.88292 0.59927 4.8107 <.0001
| All error variance estimates are significant. |
e s o -
phylye GSas | B

Estimates of variances and error variances are shown in this table. The variances of Dem60
and Dem65 are fixed to 1 and therefore there are no significance tests for these variances.
All other error variance estimates are significantly larger than zeros. This also means that
the factors do not account for all the variances of the observed variables. Thisis natural
because deterministicrelationships (indicated by zero error variances) between factors and
observed variablesare rare.
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- Estimate of Covariance for the Political
Democracy Data

Covariances Among Exogenous Variables

Standard
varl Yar2 Parameter Estimate Error t vValue Fr > |ti
Demé 0 Demé5 _Parml? 0.97528 0.02656 36.7232 <.0001

High and significant correlation between the Democracy factors in 1960 and 1965.

This table shows the covariance between Dem60 and Dem65. This estimate is also the
estimated correlation between the two latent factors because the variances of the factors
are fixed to one. This correlationis extremely high, possibly because the political
democracy status of the countries do not change much during those 5 years.
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I How Is the Model Fit?

Fit Suswnary

Modelimg Info B Obzervations kL]

B Uariables 2
B Moments 1%
B Parameters 17
B Pckive Constraints L]
Baseline Hodel Function Value & 482
Baseline Model Chi-Sguars 4% 9633
Baseline MNodel Chi-Sguare IE 2%
fr > Baseline Hodel Chi-Square <. 0001
Fhsolute Tndex Fit Function 0. 6003
Chi -Synare H o 4ERE
Chi -Square NF 13
Ve > Chd-Square 0. 080%
2-Test of WHloon & Milferty 2.138%
Moolter Ceitical N 81
Doot Mean Sguare Residual (EME) 0.5308
Standardized RHE (SEMEY 0. 0494
Gondiess of Fit Twdes (GFT) 0 BESE
Parsimony Inda Rajusted GFL (AGEL) 0. 4%
Parcinonicus GFL 05875 v
EMSER Estinate 0.1346 T
EMSER Lower 30% Confidence Limit 0.0833 s i ep e v e
THSER Upper 30% Confidence Tindt 01865 lot of fit indices. but researchers
Probability of Close Fit 0. .ne&z i I.ISI.ICI"}' r'zpor"r just a few of them.
ECUT Estinate 1.1248 |22
ECUI Lover 99% Confidence Limit 0. 9065
ECUL Vpper 99% Confidence Limit 1.460%
Rkaike Information Criteriom 0. 4606
Bozdogan CAIC 1M 8653
Schware Bayesian Criterion 117 8653
HcDonald Centrality 0, 8438
Incremental Inden  Bentler Comparative Fit Indes 0. 9403
Bentler-Bomett SET 0. 9023
Bentler-Bomett Non-nooned Indes 0.9121
Bollen Norred Tidex Bhod 0. 8568
Bollem Nom-norrss] Indes Dalta? 0. 9416
James et &l Parsimoniows XFL 0.6122

 §sas B
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We havelooked at the estimates and concluded that the relationships between the factors
and the variablesare strong and significant. Those results validated the individual factor-
variable relationships.

To gain support for the overall confirmatory factor model, you would also need to examine
the model fit statistics. This table shows various fit indices computed by PROC CALIS. In the
SEM field, a large number of fit indices have been proposed. There is no consensus as to
which indices are best to report in the research. But researchers tend to report some of the
most popularones in their respective fields.

Because a large number of indices might be confusing, PROC CALIS provides a way to
customize this fit summary table.
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_ Using the FITINDEX Statement to Customize the
Fit Summary Output

proc calis data=polidem;
path

Dem&(0 ===> Press60,

Dem60 ===> Freop6l,

Dem60 ===> Fairé0,

Dem60 ===> Legis60,

Demb65 ===> Prassth,

Dem&5 ===> Freopth,

Dem65 ===> Fair65, | ON(ONLY)= selscts the set of fit
Dem65 ===> Legis65; i indices to display.

| NOINDEXTYPE suppresses the
pvar | printing of index types.
~ Dem60 = 1, Demé5 = 1; i
é fitindex on{only) = [chisq df probchi rmsea cn srmsr

bentlercfi agfi] noindextype:

run;

 §sas B
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You can use the FITINDEX statement to customize your fit summary table.
Use the ON(ONLY)= option to select your “favorite” fit indices.
Use the NOINDEXTYPE optionto suppress the printing of the fit index types.

In this slide, | have selected the most “useful” fit indices to report in the field. These indices
are the most useful because they are either: (1) theoretically sound; (2) easy to interpret;
(3) justified by simulation studies; (4) justified by expert experience; (5) merely popular; or

(6)

useful by a combination of the abovementioned reasons.



Customized Fit Summary Table

Fit Summary

Chi-Square 44 .4686
Chi-Square DF 19
Pr > Chi-Sgquare 0.0008
Hoelter Critical N 51
Standardized RMR ({SEMR) 0.0494
Adjusted GFI (AGFI) 0.7457
RMSEA Estimate 0.1346
Bentler Comparative Fit Index 0.9403

“Good” SRMR and Bentler's CFIL. "Bad"” chi-square,
AGFI, RMSEA.

This is the customized fit summary output by usingthe previous FITINDEX statement
specification.

In practice, the model fit chi-square model statistic, its df, and the corresponding p-value
are routinelyreported even though very few researchersin the field nowadayswould use
the model fit chi-square alone to judge model fit. As shown in this table, the p-valueis very
small so that statistically it means that the hypothesized model should be rejected.
However, it is a known issue in SEM that even very useful SEM models with minimum
departures from the data would be rejected statistically. Therefore, researchers in the SEM
field tend to focus more on other fit indices to judge model fit.

The SRMR, AGFI, RMSEA, and CFl are four of the most popularfitindices in the SEM field.
See the glossary page for the descriptions of these fit indices. For the SRMR and RMSEA,
the smaller the values, the better the fit. Usually, values under 0.05 indicate good model fit.
Therefore, the SRMR says that the current model is good, but the RMSEA says that the
current model is bad. For the AGFI and Bentler’s CFl, the larger the values, the better the
model fit. Therefore, the AGFI says that the current model is bad, but the CFl says thatit is
good. Because these indices do not consistentlyindicate a good model fit, it is safe to say
that the current CFA model is promising, but it needs further confirmation.
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A Confirmatory Factor Model
with Loading Constraints

GSas B

This example show you how to specify equality constraintsin your model.
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i Constraining the Path Coefficients (Loadings)

1 _+ Press60

>l

- _ ’//Fa?ﬂf Freop80
| Demeo & lam2

~lam3 | Fair60

.' lamd™~ | egis60

Note: Error variances

| are not represented
\ + Press6bh P

| " because they are
\ . & default parameters.
‘\\ __ Freop65
Fairé5
Legis65

In addition to fitting a basic confirmatory factor model, PROC CALIS enables you to set up

parameter constraints easily. The main tool is to use parameter names in the specification.

We continuethe previous example by imposing more constraints to the model.

For the political democracy example, the researcher wants to constrain the factor loadings
(path coefficients) across time. The theoretical reason is that the measured variablesare
basicallythe same in the two years. In the pathdiagram, you can represent equality
constraints by putting the same parameter names or labels to the pairs of the related
paths. For example, lam1is the loading of Press60 on Demé60. It is also the loading of
Press65 on Dem65. Similarly, you can set the other 3 sets of constraintsin the path
diagram.
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- Fitting a CFA Model with Constraints on the Loadings

proc calis data=polidem;
path
Demé) ===> Presstl = lamil, These constrain the path coefficients. i
Dem60 ===> Freop60 = lam2, | A=
Demé60 ===> Fair60 = lam3, éme
Dem60 ===> Legis60 = lamd, |
Dem65 ===> Press65 = laml, |
Dem65 ===> Freopbt5 = lam?2,
Demé5 ===> Fair65 = lam3,§
Dem65 ===> Legist65 = lami;
pvar
Dem60 = 1, Dem&s = 1;
run;

In the PATH modeling language, the constraints could be handled similarly. The code shown
in this slide is modified from the previous code by addingthe parameter names in the
paths. The syntaxis to add an equal sign and then the parameter names after the path
specificationsin the PATH statement. With the same parameter names for the pairs of the
related paths, the estimates would be exactly the same.
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_ Fit Summary Table for the Political Democracy Data
with Loading Constraints

Fit Summary

Chi-Square 46,8893
Chi-Square DF 23
Pr » Chi-Sgquare 0,0023
Hoelter Critical N 56
Standardized RMR (SRMR) 0.0714
Adjusted GFI (AGFI) 0.7844
RMSEA Estimate 0.1185
Bentler Comparative Fit Index 0.9440

| Only Bentler's CFI indicates a geod model fit.

0 Gsas B

This table shows the fit summary of the model with the loading constraints. Because of the
constraints, this model does not fit as well as the previous model. The SRMR is larger than
0.05. The AGFl is much smaller than 0.9. The RMSEA is much larger than 0.05. All these
show a bad model fit. However, Bentler’s CFl (0.94) still shows a good model fit.

Certainly, the purpose of the current modelingis to illustrate the use of constraints, we
expected a worse fit than the previousunconstrained model.
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Estimates of the Constrained Loadings for the
Political Democracy Data

PATH List
standard
—————————— Path-———-——— Parameter Estimate Error t valua Pr > |t]
Damb == Prasse0 laml 2.13970 0.21716 9.8532 <. 0001
Demb — Freop60 lam? 2.8011e6 0.29976 9.3447 <. 0001
Demb —r Fair6l lam3 2.54987 0.27316 9.3346 <.0001
Demb60 — Legisel lamd 2.82969 0. 27285 10.3708 =, 0001
Dembh —r Pressbh laml 2.135970 0,2171% 9.8532 <. 0001
Dembh —— Freopb b lam? 2.80116 0.29976 9.3447 <. 0001
Dembh —=lr Fairhh lam3 2.54987 0.27316 9.3346 <. 0001
Dembh ==l Legisth lamd 2.B2969 0. 27285 10.3708 =, 0001

All path coefficients are significant.

As required from the model, paths with the same loadingparameter have the same
estimates. For example, both Dem60===>Press60 and Dem65===>Press65 have a loading
estimate of 2.14 (lam1). All loading estimates, again, are statistically significant. This shows
that all the purported factor-variable relationshipsare supported.
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Estimates of Variances and Covariances for the Political

. . .
Democracy Data with Loading Constraints
Variance Parameters
Yariance Standard
Type Yariable Parameter Estimate Error t value Pr > |t|
EXogenocus Damé( 1.00000
Demb 5 1.00000
Error Pressal _Addl 2.01017 0.40312 4.9865 <.0001
Freop&l _Add?2 6.72037 1.211%6 5.5450 <.0001
Fairel _Add3 5.40824 0. 971833 5. 5280 <. 0001
Legisal _Add4 2.08468 0.60956 4.7324 <.0001
Pressah _Add5 ?.61966 0.49456 5.2970 <.0001
Freopbh _Adde 4.16958 0.79818 s.2238 <.0001
Fair6hs _Add? 3.55362 0. 67700 5.2494 <.0001
Leqgisah _Add8 2.85029 0.59556 4.7859 <.0001
Covariances Among Exogenocus Yariables
standard
Varl var? Parameter Estimate Error t value Pr > |t|
Demb6s Demé0 _ Rddf 0.97480 0.02682 36. 3466 <. 0001

3 Gsas | Bs.

All the error variance estimates are also significant. The correlation between Dem60 and
Dem60 is again very high and significant.



A Confirmatory Factor Model
with Correlated Errors

Constraining parametersin the preceding example led to worse model fit. Now we will
modify the model in the opposite way---adding more parameters to improve the model fit.
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Adding Error Covariances

1 -~ Press60 .

a1 Freops iy \
o Demgo & lam2 ——— \|
: - T~Jam3 | Fai0 i | |
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" lam1 ., Freopss 1 |

. = mm2 LI\ /]

S_lam3 > Faire5 |/

— % |/
A1, lam4 Legis65

7

. Gsas B=.

With the loading constraints, you observed a worse model fit.

With the four equality constraints on the loadings, you basically reduce the number of model
parameters by 4. This naturally leads to a worse modelfit than if you would allow all the loadings to
be freely estimated.

Now you consider an opposite direction. Instead of reducing parameters by putting equality
constraints, you want to add more parameters to the model. Although adding more parameters to
your modelwould improve the modelfit, the drawback s that it makes your model more
complicated, which is usually judged as an undesirable property of a sound model. It does not mean
that you cannotadd parameters. It only means that you should add only those parameters that
could be justified by theoretical or substantive reasons.

In this example, it has been argued that freedom of group opposition (Freop) and the elective
nature of the legislative body (Legis) have a part of their correlation that is beyond their common
latent factors could explain (see Bollen). In SEM, this “extra” correlation is conceptualized as a
correlation (or covariance) between the errors of the two variables. In the path diagram, this error
covarianceis represented by a double-headed arrow connecting the two variables. Thatis, Freop60
and Legis60 are connected by a double-headed arrow in 1960. By the same argument, Freop65 and
Legis65 are also connected by a double-headed arrow to representthe error covariance.

In addition, it is argued in Bollen that each of the variable pairs that were of the same nature but
were measured at differenttimes have a part of correlation that is beyond their common latent
factors could explain. For example, Press60 and Press65 are connected by a double-headed arrow
to representtheir error covariance, which explains the part of the covariance between the two
variablesthatis beyond the explanationby the covariance between Dem60 and Dem®65. Similarly,
the Freop-, Fair-, and Legis- pairsare all connected by double-headed arrowsto representerror
covariances.
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i Adding Error Covariances (With Explicit Error Terms)
1,

A~ = Press60 «——— et 3

Freop60 -« e2 ¥ \
< Dem&0 ¥ o~ W
Fair60 |« e3 | |
—_— =% ! a\ l
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l S =) \\.fll
1 .f""‘-.-'f‘
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\ | — | ,lam 1.2 Freop6s L1 (e 5/ J‘
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— r'y > - = ,.J" /
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The path diagramin this slide is equivalent to the previousrepresentation that does not
use expliciterror variables.

In this path diagram, error terms for the measured variablesare shown. The double-
headed arrows are shifted to the error terms. This makes it obviousthat those double-
headed arrows are covariances between the error variables (but not as partial covariances
between the observed variables,as shown in the previousslide).

Therefore, this path diagram representation is conceptually clearer about what are really
being correlated in the model. However, the addition ofthe error terms makes the path
diagram more cluttered. In this workshop, most of the time | would stick with the path
diagram representationthatdoes not use explicit error terms.
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- Fitting a CFA Model with Loading Constraints

and Correlated Errors

path
Demé&0
Demé&0
Demé&0
Dem60
Demé5
Demé65
Demé5
Demé65

===

Freop6l Legisél,
Fress60 Pressés,
Fair6(0 Fairé5, Legis6é0 Legis65;

proc calis data=polidem;

Press60
Freop6l
Fair60

Legis60
Press6b
Freop6s
Fairé5s

Legis6b

0 =1, Dems5 =

L | [ T 1 I 1|

laml,
lam2 ,
lam3,
lamd ,
lami,
lam2,
lam3,

lamd ; | Use the PCOV statement to

Freop65 Legisé5,
Freop60 Freopé65,

| specify error covariances. |

With the six additional pairs of correlated errors, you have six more error covariance

parametersin the model.

In the PATH modeling language, you can specify these covariance parametersin the PCOV
statement. In this example, this means that you enumerate the six pairs of measured
variablesin the PCOV statement. For example, the first pairis Freop60 and Legis60, which
represent a covariance parameter between their error terms. Similarly, you specify the

remainingfive error covariances.

aany | SSaS Pon
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- Fit Summary Table for the CFA Model with Loading
Constraints and Correlated Errors

Fit Summary

Chi-square 15.1946
Chi-Square DF 17
Pr > Chi-Sdquare 0.5815
Hoelter Critical W 135

standardized RMR (SRMR)
Adjusted GFI (AGFI)

RMSEA Estimate

Bentler Comparative Fit Index

.0590
L9043
L0000
.0000

= o oo

All indices indicate a good model fit.

LI X L Ssiséisi Eﬁﬁh

This model is supposed to fit better because of the added parameters for the error
covariances.

In fact, the model fit chi-square is not statistically significant. This supports the
hypothesized model in the population.

All other fit indices show good or excellent fit. The SRMR is 0.059, which is only slightly
larger than the 0.05 criterion. The AGFI is 0.90, which is an indication of good model fit by

convention. The RMSEA is essentially zero, which is the smallest RMSEA you could ever get.

The CFlis 1, which is also the largest CFl you could ever get.
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- Estimates of the Loadings for the CFA Model with
Constrained Loadings and Correlated Errors

PATH List
standard
—————————— Path-———-——— Parameter Estimate Error t valua Pr > |t]
Damb == Prasse0 laml 2.16450 0.23009 9.4074 <. 0001
Demb — Freop60 lam? 2.61630 0.32500 &.0502 <. 0001
Demb —r Fair6l lam3 2.61693 0. 28700 9.1183 <. 0001
Demb60 — Legisel lamd 2.752%1 0. 28312 9.7236 =, 0001
Dembh —r Pressbh laml 2.16450 0, 23009 9.4074 <. 0001
Dembh —— Freopb b lam? 2.61630 0.32500 8.0502 <. 0001
Dembh —=lr Fairhh lam3 2.61693 0. 28700 9.1183 <. 0001
Dembh ==l Legisth lamd 2.75291 0. 28312 9.7236 =, 0001

All pafﬁ coefficients are significant.

All loading (path coefficients) estimates are statistically significant, supportingthe
relationships between the latent factors and the measured variables.



- Estimates of the Variances for the CFA Model with
Constrained Loadings and Correlated Errors

variance Parameters

Yariance Standard

Type Variable Parameter Estimate Error t ¥alue Pr > |t

Exogenous DemG 0 1.00000
Demb b 1.00000

Error Press6l _Rddl 1.91664 0. 43982 4.3578 =, 0001
Freop6d _Rdd? T.65544 1.39023 5.5066 <.0001
Fairé0 _Rhdd3 5.0379%98 0. 98299 5.1251 <.0001
Legisad _Aaddd 3.27028 0.73387 4.4562 <.0001
Presseh __ Add5 2.52969 0.52882 4.7836 <. 0001
Freopts __ Add6 4.87208 0. 94384 5.1620 <.0001
Fairehs _Addi 3.32508 0.71220 4.6687 <.0001
Legis6h AddB 3.25392 0,.7331% 4.4380 <. 0001

All error variance estimates are significant.

3 Gsas | Bs.

All error variance estimates are significant.




Estimates of the Covariances for the CFA Model with
Constrained Loadings and Correlated Errors

Covariances Among Exogenous Variables

Standard
WVarl Var? Parameter Estimate Error t value Pr > |t
Dem&s Dem60 _Adds 0.96603 0.02928 32.9904 <. 0001

Covariances Among Errors

Error Error Standard

of of Parameter Estimate Frror + Value Pr > |t]
Freop60 Leqis60 _Parml 1.42826 0. 69666 2.0502 0.0403
Freop6s Lexyis6h _Parm? 1.26677 0. 59365 2.1339 0.0329
Press60 Press6h _Parm3 0.58548 0.37178 1.5748 0.1153
Fraeop6l Freopth _Parmd 2.09624 0.74763 2.6039%9 0.0050
Fair60 Faire5s _Parm5 0.74805 0.62336 1.2000 0.2301
Legis60 Legis6h _Parmé 0.47686 0.46214 1.0319 0.3021

Bad news: Some error covariance estimates are not significant. |

... GSas B

The first table shows the correlation between the two latent factors. Again, the correlation
is very high and significant.

The second table shows the estimates for the newly added covariances between errors.
Three of these covariancesare significant, while the others are not. For example, Freop60
and Legis60, Freop65 and Legis65, and Freop60 and Freop65 are three error covariances
that have t valueslarger than 1.96. The other three pairs have insignificantt-values. This
means that addingthese three covariances might be somewhat undesirable because their
estimates are actually not significantly different from zero, casting doubts abouttheir
presence in the model.

The lesson here is that even though addingerror correlations (or covariances) might
improve the model fit, you should not routinely add error covariancesonly to boost the
model fit. Adding unjustified error covariances makes your model more complicated and
harder to interpret, especially when some error variance estimates turn out to be
insignificant.
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Political Democracy and
Industrialization:

A Full Structural Equation Model

: 9sas  Hs.
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. Political Democracy and Industrialization

= Bollen (1989) Chapter 8
= A full structural equation model (a full LISREL model)

= Additional variables for measuring industrialization
(Indust) in 1960
Gross national product per capita {Gnppc60)
Energy consumption per capita (Enpc60)
Percent of labor force in industrial occupations (IndIf60)

* Purposes: Validate the measurement model and the
structural relationships

We continue with the previous model and add one more latent factor and its indicatorsinto
the model.

This exampleillustratesa full structural equation model (or a full LISREL) model. Essentially,
this means that our focus is not only on validating the relationshipsbetween the latent
factors and the measured variables (thatis, the measurement model), but also on
validatingthe functional relationshipsamong latent variables (that is, the structural model).

For example, now you have a latentfactor called industrialization (Induct) that is supposed
to be reflected by three observed variables: gross national product per capita (Gnppc60),
energy consumption per capita (enpc60), and percent of labor force in industrial
occupations(IndIfe0). All these variables were measured in 1960.

The industrialization (Induct) latent variable serves as a predictor of the two democracy
factors (Dem60 and Dem65). This kind of functional relationships between latentvariables
has not been explored previouslyin the confirmatory factor models.
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. Political Democracy and Industrialization:
The Path Diagram
-~ Press60 |«
— Freop0
Dems0 |< F— | |
Fai60 |\
GnppcBO 1. ' Al
Legis60 1~ \';.-"5
Enpc60 |—>  Indust \V)
Indif60 ¥~ —— 4 il )
_+ Freop65 ’|
Dem&5 K
S\ Jam3—~  Fai65 |
Sy Legis65 :

5338-5’4‘:.

The entire SEM model is depictedin the path diagram of the current slide. The most
notable additionis the paths from Indust to Dem60 and Dem65--- industrialization in 1960
serves as a predictor of democracy in both 1960 and 1965. Three observed variablesserve
as indicators of the industrialization: Gnppc60, Enpc60, and IndIf60.

There are two main modificationsfrom the preceding confirmatoryfactor model.

First, instead of allowingDem60 and Dem65 to freely covary in the CFA, the current model
treats Dem60 as a predictor of Dem65.

Second, a different method for identifyingthe latent factor scales is used in the current
model. In the preceding CFA model, variances of Dem60 and Dem65 are fixed to one. But
because they become endogenousin the current model, you can no longer use this type of
scale identification method. Instead, one of their observed indicatorvariables(thatis,
Press60 and Press65) now has a fixed path coefficient at one. Similarly, the path coefficient
from Indust to Gnppc60 is fixed to one for scale identification.
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- Fitting the Structural Equation Model for the Political
Democracy and Industrialization Data

proc calis data=polidem; \ﬂﬁpl"'l"_‘m‘w‘:iﬁmm’"‘
path e .
Dem§0 ===> Press60 Freopf0 Fair60 Legis60
Demt5 ===> Press65 Freopt5 Fairé5 Legisé6b

1. lam?2 lam3 lamd,
1. lam2 lam® lamd,
| Indust ===> Gnppcb60 Enpcéd Indlfe0 = 1.,

" Indust ===> Dem60 Dem65,
Dem60 ===> Dem65;
poov
Freop60 Legis60, Freop65 Legises,
Press60 Press65, Freopsd Freopts,
Fair60 Fairé5s, Legis60 Legisé5s;

rumn;

. Gsas B=.

You can use PROC CALIS to specify this structural equation model easily.

In the PATH statement, | use a multiple-path specification syntax. In the first specification,
Dem60 is a predictorof 4 outcome variables: Press60, Freop60, Fair60, and Legis60. This
specifies four pathsin a single path specification. After using an equal sign, | specify four
parameters for the four paths. The first one is a fixed constant 1, which is applied to the
Dem60 ===> Press60 path. The second one is a free parameterlam2, which is appliedto
the Dem60 ===> Freop60 path, and so on.

In the next 3 path specifications, | also use the multiple-path specification syntax. The
second multiple-path syntaxspecifies that Dem65 is a factor with four indicators. The path
coefficients (loadings) are also specified explicitly. The third multiple-path syntaxspecifies
that Indust is a factor of three observed indicators, with a fixed one for the effect of Indust
on Gnppc60. The path coefficients for the paths Indust===>Enpc60 and Indust===>IndIf60
are unnamed free parameters (with the empty specifications). The fourth multiple-path
syntax specifies that Indust is a predictor of both Dem60 and Dem65. The corresponding
path coefficients are (unnamed) free parametersin the model.

The last path in the PATH statement specifies Dem60 as a predictor of Dem65. Notice that
no PVAR statementis used because fixing the Dem60 and Dem65 variancesto one is not
used in the current model. The scales of the latent factors are identified by fixing some
path coefficients to 1.
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Political Democracy and Industrialization:
Fit Summary Table

Fit Summary

Chi-Sgquare 39.6438
Chi-Square DF 38
Pr > Chi-Square 0.3966
Hoelter Critical N 100
Standardized RMR (SRMR) 0.0558
Adjusted GFI (AGFI) 0.8606
RMSEA Estimate 0.0242
Bentler Comparative Fit Index 0.99875

Mot a bad fit for the data.

The fit of the structural model is acceptable, if not exceptionally good.

The model fit chi-squareis not significant, supporting the hypothesized model. The SRMR is
close to 0.05. The AGFI is 0.86, which shows a reasonablefit. The RMSEA indicatesa very
good model fit, as the value (.0242) is much lower than 0.05. The CFl is almost 1, which
shows a perfect model fit.
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- Political Democracy and Industrialization:

Estimates of Path Coefficients

Dembi
Demé)
Demad
Dams)
Demb5
Demb5
Dembh
Dembh
Indust
Indust
Indust
Indust
Indust
Demé)

Prass&0
Fraopb0
Fairé0
Legis6l
Press6h
Freop6h
Faireh
Legis6h
Gnppchi
Enpc60
Ind1f60
Demb60
Daem65
Damé5

Parameter

lam?2
lam3
lami

lam2
lam3
lam4

_Parm01
_Parm0?
_Parm03

Parmdd
:DarnDE

SO HHRNHHRERRRERHRHR

PATH List

Estimate

L 00000
.19079
17454

25099

L 00000
L19079
17454
. 25099

00000

L 17966

a1e21

.47133
. 60046

86504

Standard
Error

(=]

.14020
0.12121
L11757

(=]

<

.14020
12121
L1167

oo

.13932
15290
.39496
Lx2T22
07538

(=B -~ —

t value

. 4934
. 6699
L6401

. 4934
. 6899
L6401

. 6453
L8913
L1253
6427
L4765

Pr =

heesh

1t

0001
0001
0001

0001
0001
0001

0001
0001
0002
oog2
0001

All path coefficients are significant---a pretty good sign.

GSas B,
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Political Democracy and Industrialization:
Estimates of Variances

Variance Parameters

Variance standard

Type ¥ariakle Parameter Estimate Error t value Pr > |t|

Exogenous Indust _Addol 0.45466 0.08846 5.13599 <.0001

Error Pressal _Addo2 1.87973 0.44229 4.2500 <. 0001
Freopbl _ Addo3 T.68378 1.39404 5.511%9 <.0001
Fairal Add04 5.02270 0. 91587 5. 1469 <.0001
Legisal AddO b 3.26801 0.73807 4.4278 <.0001
Press6h _Addos ?.34432 0.48851 4.7990 <.0001
Freopbh _Addo7 5.03534 0.93993 5.3572 <.0001
Fairéhs _Addos 3.60813 0.72394 4.9840 <.0001
Leqgis6hs _Bddo9 3.35236 0.71788 4.6698 <.0001
Gnppc&0 _Addio 0.08249 0.01%86 4.1538 <.0001
Enpc6l _Addll 0.12206 0.07105 1.7178 0.0858
Indlf&a0 _Add12 0.47297 0.09197 5.1a27 <.0001
Dem60 _Add13 3.92767 0.88311 4.4475 <.0001
Demb 5 _hddld 0.16668 0.23158 07197 0.4717

.. T

Some error variances are not significant: Enpc60 and Dem65. Enpc60 is an indicator of the
Industrialization in 1960. This insignificanterror variance means that the Indust factor
predict Enpc60 almost perfectly. However, the correspondingt-valueis 1.71, which could
be judged as marginally significant.

The error variance for Dem65 is also not significant, as evident by the non-significant t-
value of 0.72. This means that given Indust and Dem60, Dem65 can be predicted almost
perfectly.

Unlike insignificanterror covariances, insignificant error variances are not serious concerns.
Insignificant error covariances challenge the proposed model with “wastebasket”
parameters to boost model fit, while insignificant error variances only means that predictor
and outcome relationships might be nearly perfect.



- Political Democracy and Industrialization:
Estimates of Covariances

Covariances Among Errors

Error Error Standard

of of Parameber Estimate Error t value Pr > |t
Freopbl Leagis60 _Darm0é 1.45956 0.70251 2.0776 0.0377
Freopbh Legises _ParmQ7 1.39032 0.5885% 2.3621 0.0182
Pressal Press6es _Parm08 0.59042 0.36307 1.6262 0.103%2
Freop&l Freop6s _Parm09 2.21252 0,.75242 2.9405 0.0033
Faira0 Faireh _Parml0 0.72123 0.62333 1.1571 0.2472
Legisal Legishh Parmll 0.36769 0.45324 0.8112 0.4172

GSas B

Again, there are some insignificant error covariances. This result challenges their presence
in the model.



- Political Democracy and Industrialization: Squared
Multiple Correlations

Squared Multiple Correlations
Error Total
Variable Variance Variance R-Square
Enpcé60 0.122086 2.28211 0.9465
Fair60 5.02270 11.798%5 0.5743
Fair65s 3.60813 10.09361 0.6425
Freop60 7.68378 14.64875 0.4755
Freop65 5.03534 11.70144 0.5697
Gnppcé0 0.08249 0.53715 0.8464
Indlf60 0.47297 1.97602 0.7606
Legis60 3.26801 10.95502 0.7017
Legis65 3.35236 10.70953 0.6870
Presss0 1.87973 6.79166 0.7232
Pressés 2.34432 7.04548 0.6673
Dem60 3.92767 4.91183 0.2004
Demb5 0.16668 4.70116 0.9645

LI X L SS:SéiEi E&ﬂh

The square multiple correlations are usually used to measure the percentage of
overlappingvariance between the predictors and the outcome variables. In the current
example, R-squares range from 0.2 to extreme high values such as 0.95 and 0.96.

The smallest R-square is the one for predicting Dem60, which is 0.2. This actuallyis nota
small R-square value for social science data.

But the R-square (0.96) for Dem65 is extremely high. This means that Dem65 is almost
perfectly predicted from democracy and industrializationin 1960.



The Extended
PATH Modeling Language

GSas B
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- Features of the Generalized PATH Modeling
Language

= Extension of the PATH modeling language

= Represents all generalized paths in the PATH statement
= Variance-path: Y <==>Y

= Covariance-path: X <==>Y

= Mean or intercept (one-path): 1 ===>Y

s 0sas | B

008

In sum, the generalized path modeling language enables you to specify all types of arrows
in the path diagram as “paths,” includingthe variance, covariance, intercept, and mean
parameters.

Varianceof Y is a path like Y <==>Y.

Covariancebetween X and Y is a path like X <==>Y

Mean or interceptfor Y is one-path like 1===>Y.

67



- Political Democracy and Industrialization:

and Covariances Are “Paths”

Variances

_~ Press60 |l
4|"// — \“\\l
,_ | FreopB0 |\ \
| Demeo < lam2 — 1R\
\ / “«M_E_Jamgﬂ Fairé0 §4q,‘\| \| |
e // S “‘\\h E ,’"'\ |
.anpcﬁc \1\\ . - A Legis60 1 ..\II
Enpc60 —\n Indust "\.f')
/ T . [eCaYE
7 ——, _+ Press65 7 )|
Indif60 S Al A Y |
\‘- s 3 /,/,1// - . L ,’; J.'j
/ - Freop =/
. Demg5 re{::’ am2 L iN/||
: N T BoA
~Jam3 ™ Fai5 7|/ |
— e :. ) i ,"II;"; |
T 1 i
am4™ Legises |/
' Covariances are represented os double-headed arrouws. , st
L B y \
~ Gsas|B=

To generalize the PATH modeling language, error covariancesin the path diagram could also
be specified as “paths” in PROC CALIS. In fact, covariancesin the path diagram are already

represented as double-headed arrows, as shown in the political democracy and

industrialization example.
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_ An Example of the Generalized
PATH Modeling Language

PROC CALIS DARTR=polidem;
EATH
Deméll ===> Press6l) Freop60 Fair60 Legisé0 = 1. lam2 lam3 lamd,
DeméS ===> Fress65 Freop65 Fair65 Legis65s = 1. lam2 lam3 lamd,
Indust ===> Gnppchl Enpcé0 Indlfe0 = 1.,
Indust ===> Dem60 Demf5,

B | Use the PCOVY statement to specify the
""""""""""""""""""""""""" - o covariances

Freop60 Legis&0, Freop65 Legisé5s,
Preeegb0 Preseg6S, Freopél Freopss,
Fairé0 Fairé5, Legieé0 Legisés;

proc calis data=spolidem;

path

Dem60 ===> Press60 Freop60 Fairé0 Legis60 = 1. lam2 lam3 lamd,

Dem65 ===> Presgs65 Freop65 Fair65 Legis65s = 1. lam2 lam3 lamd,

Indust ===> Gnppcé0 Enpcé0 Indlféd = 1.,

Indugt ===> Demé0 Demb5,

Demé0 ===> Demé5, i Use the generalized path to

F:eor;!ﬁo <==> Legis60, Ere.c-mss Cm=> Ii.egiSSS,; J ‘P'“_:if" covariances (and |
| T variances) ;

Press60 <==> Press6S, Freop6l <==> Freop65,
Fair60 <«<==> Fair65, Legis60 <==> Legis65:'

 §sas B
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The top panel shows the use of PCOV statement to specify the covariances. The bottom
panel shows that these covariances are specified as double-headed paths, which resemble
their representationsin the path diagram.

The two PROC CALIS specificationsshown above are equivalent. They will generate the
same estimationresults.



LI - - - 5 -
Political Democracy and Industrialization: Output with
Generalized Paths

PATH List
Standard

Path o =ad Parameter Estimate Error t Value Pr > |t|
Dem&0 = Press6e0 1.00000
Demal) — Freoptl lam2 1.1%079 0, 14020 #.4934 <. 0001
Dem&l —_— Fairél lam3 1.17454 0.12121 9.6899 <, 0001
Dem&0 — Legisel Jlamd 1.2509% 0. 11757 10,6401 <. 0001
Dembh _ Pressah 1. 00000
Dem&h —_— Freop65s lam2 1.19079 0.14020 8.4934 <. 0001
Demb5 — Faireahs lam3 1.17454 0.12121 9.68%5 <. 0001
Demfh —_— Legis6h lamd 1. 25099 0.11757 10. 6401 <, 0001
Indust —_—l Gnppc 60 1. 00000
Indust — Enpcal Parm01 2.11966 0. 13932 15. 6453 <. 0001
Tndust —_— Tndlf60 :Damoi' 1.81821 0.15290 11.8913 <, 0001
Indust —_— Dems&0 _Parm03 1.47133 0.39496 3.7253 0.0002
Indust —_— Demf 5 _Parm04 0. 60046 0.22122 2.6427 0. 00682
Dembld = Damh 5 _Parm05 0. 86504 0. 07538 11.4765 o 0001
‘Freoptl Legisel Parm0a 1.45%256 0.70251 2.0776 0.0377
Freophh Teqgis6h :Damﬂ? 1.39032 0. 58059 2.3621 0,.0182
Prassal Press65 _Parm08 0. 59042 0.36307 1.6262 0.1039
Freop&l Freopth _Parm0% 2.21252 0,75242 2.9405 0. 0033
Fair6a Fairth _Parml0 0.72123 0. 62333 1.1571 0.2472
‘Legissl = Leagis6s Parmll 0.36769 0.45324 0.8112 0.4172

L K

The results obtained from PROC CALIS now shows the covariance estimates as “paths” in
the PATH list.

This is where the extended path modeling language might be very useful---it shows all
estimates in the same table so that you can report all the SEM estimates directly in your
research paper.



| Default Free and Fixed Parameters in PROC CALIS

= Default free parameters

o Variances and covariances among all exogenous (independent)
variables (observed or latent, except for error terms)

o Error variances for all endogenous (dependent) variables
o Means or intercepts of all observed variables

= Default fixed zeros

o Unspecified paths and error covariances
o Means or intercepts of all latent variables

The main purpose of setting default parameters is to enable you to specify only the
functional relationships among variables in most practical applications.

Knowing the defaultfree and fixed parametersin PROC CALIS are useful because it
enhancesthe coding efficiency and accuracy. Here is a list of default free parametersand
fixed zeros used in PROC CALIS:

(Note: This slide has been changed slightly after the printing of the handout.)
* Default free parameters
o Variancesof and covariancesamong all exogenous (independent)variables
(observed or latent, except for error terms)
o Error variances of all endogenous (dependent)variables
o Meansor intercepts of all observed variables
* Default fixed zeros
o Unspecified paths and error covariances
o Meansor intercepts of all latent variables

At the first glance, it might seem to be tedious and demandingthat modelers must
remember all these default parameter rules to specify an SEM accurately. However, the
default parameterization used in PROC CALIS matches that of regression analysisand it is
designed with the following main purpose in mind: In most practical applications, you
would only need to specify the functional relationshipsamong variables (that is, the single-
headed pathsin the path diagram) and the fixed variances of the latentvariables.
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LISREL Models
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| A LISREL Model for the Political Democracy and
Industrialization Data

Structural | i Measurement

[ model | [ model fory o Press€0 |«
fheosurement | "f e Fre0p60 By
| | . =
Lo Demgo < lam2

e = ._I_-ar_ﬁj__" Fairé0 |« II
GnppcB0 & 1. -

lamd™>~  Legise0 | \|
Indust J

%

Enpcel

Indif60 ' . I |

’1 Freop65 <
Dem&5 ---:-.:_'_j'_____lam2

SSlam3 s Fai65

i

""" Temraet ) 1AM | ogis65

[T

§S&S.¥.1=.

The preceding full SEM modelis also a good illustration of the LISREL model.

The path diagram for the precedingmodel remains unchanged here. In order to call this
path diagram a LISREL model, you have to identify the LISREL componentsin this path
diagram. The two main componentsin LISREL are the measurement models and the
structural model.

First, the measurement models are identified. A measurement model is about how
observed variablesare related to the latentvariables or constructs in the model.
Specifically, the measurement model that involvesindustrialization isthe measurement
model of x because Indust serves as an exogenous (independent)factorin the path
diagram. The measurement model thatinvolves Dem60 and Dem65 is the measurement
model of y because Dem60 and Dem65 are endogenous (dependent) factorsin the path
diagram.

Second, the structural model is identified and highlighted in the center of the path diagram.
The structural model describes the functional relationshipsamong the latentvariables
(constructs) in the path diagram.

Therefore, all the essential components of the LISREL model are identified in the current
path diagram.
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~ Democracy and Industrialization Data

proc calis data=polidem; Measurement model for y !
path L =T
Dem60 ===> Press60 Freopt0 Fair60 Legiss0 = 1. lam2 lam3 lamd;
Dem65 ===> Pressf65 Freopt5 Fair6b Legist5 = 1. lam2 lam3 lamd;,
Indust ===> Gnppc60 Enpcé0 Indlf60 = 1 h e
s e e et
Indust ===> Dem&0 Demé&5, , / . | model for x
51I’1.IC"|.II"ﬂ| de!,I | L
DemE0 ===> Dem65; L

s T
Freop60 Legis60, Freopb65 Legisé5,
Press60 Press65, FreopbB0 Freopé5,
Fair60 Fair65, Legis60 Legis€5;

run;

| Msmumﬁgm model for y |

In the PATH modeling language, you can also identify the code for the measurement
models and the structural model. The preceding code is recited here for illustrations.

In the PATH statement, the first three multiple-path specificationsare concerned with the
measurement of the latent constructs. In addition, all specificationsin the PCOV statement
are for the covariances of the measurement errors.

The last two path specificationsin the PATH statement are for the structural model. They
describe the functional relationships between Indust, Dem60, and Dem65.

After identifyingthe LISREL componentsin the path diagram and in the SAS code, now you
might have a clue to specify the LISREL model in PROC CALIS. Because the same path
diagramis being used by the PATH modeling language and the LISREL model, the only task
here is to transcribe the code in the PATH modeling language to the language for the LISREL
model---thatis, you need to specify the measurement and structural models in terms of
LISREL model matrices.
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A LISREL Model Specified by the LISMOD
Modeling Language of PROC CALIS

proc calis data-polidem nose noparmname;
lismod
xvar = Gnppc60 Enpo6d Indlfe0,
yvar = Press6l Freopb6ld Fair60 Legis60 Press6h Freopb6h Falreh Leqgiseh,
xi = Indust, 3
ata = Demf0 Demb5; et J'?'l-eu.iurema?i" mace}. for. Y I
“;a-':-‘-i--r- + P PP IEER TR S LI L LIRS e
Tambday [ 1, €1] = 1. lam? lam3 lamd, /* Paths from Demtl and DeméS to yvar */
[ 5, #2] = 1. lam2 lam3 lamd:
matrix
Theta¥ [ 4, 2], [ 8, &1, /* pcov statement in the path model */
[ 5, 11, [ &, 21, [ 7, 3}, [ 8, 4];
matrix
_Lambdax [ 1, 1] =1., n— /* Path from Indust to xvarx/
[ 2 te 3, 1]; i —
| Mheasurement model for x |
matrTix
i bl o2, 3. | = Structural model !
matrTix L R R R R
_Bcta_ [2,1];

. §sas .

PROC CALIS supports the so-called LISMOD modelinglanguage for specifying LISREL models. In
order to fully understandthe PROC CALIS code for specifying the LISREL model, knowledge about
matrix algebrais needed. But here | only describe the code in a conceptual way.

In the LISMOD statement, you first classify your variables into one of the four categories:

1. x-variables:a list of observed indicators for the exogenous (independent) latent factors in the
model.

2. y-variables: a list of observed indicators for the endogenous (dependent) latent factorsin the
model.

3. xi-variables: a list of exogenous (independent) latentfactors in the model.

4. eta-variables: a list of endogenous (dependent) latentfactors in the model.

Traditionally, the LISREL model or LISREL program had been developed as a matrix-based language.
Parametersin the models are specified as matrix elements in some specific model matrices with
Greek names. PROC CALIS supports the matrixinput of these LISREL model matrices. For example,
in the measurementmodelfory, LambdaY_is the matrix that relates the y-variables to the eta-
variables. Instead of specifying the paths as in the PATH statement, the MATRIX statement for
_LambdaY_servesthe same purposeinthe LISMOD modelinglanguage. The MATRIX statement for
_ThetaY_ specifies the error variances and covariances of the y-variables, much like the
specifications of the PCOV statementin the PATH modelinglanguage. In other words, the PATH
model specifications are transcribed into the LISMOD model specifications for the y-variables.

Similarly, the MATRIX statement for _LAMBDAX_ specifies the parametersin the measurement
model for the x-variables.

Finally, the structural relationshipsor the path relationshipsamongthe latent factors are specified
in the MATRIX statements for the _GAMMA_and _BETA_matrices.

To simplify the output, | used two optionsin PROC CALIS statement. The NOSE option suppresses

the printing of standard errors and the NOPARMNAME option suppresses the printing of the
parameter names.
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- LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for y)

_LAMBDAY Matrix

Dem () Demé b
Pressel 1.0000 0
Freopb 1.15%08 1]
Fairao 1.1745 i]
Legisal 1.2510 0
Presseh 0 1.0000
Freopts 0 1.1208
Fairghs i} 1.1745
Legis6h ] 1.2510

Note: The NOSE and NOPARMNAME options suppress the printing of
the standard error estimates and parameter names.

The following few slides show the outputfrom PROC CALIS for the LISREL model. All the
results are matrix-oriented. Details for these results have been discussed for the PATH
model outputand will not be repeated here. In general, you can find correspondence
between the LISMOD and the PATH results.

This slide shows the measurement model for the y-variables.



- LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for y)

_THETAY Matrix

Press60 Freop 60 Fairéd Legis6n Press 65 Freop6s Fairés Legis 65
Press6l 1.8797 L} ] 0 0.5904 ] o L]
Freopid L] 7.6838 ] 1.4596 [ 2.2125 o 0
Fairsd [] 0 5. 0221 v [ [ 07212 [
Legis6 o 1.459%6 ] 3.2680 L] ] o 03677
Press6s 0.5904 0 ] o 2.3443 ] 11 [
Erecpts [] 22125 ] v [ 5.0353 n 1.3903
Fair6h o L} 0. 7212 0 L] ] 3.6081 L]
Legis6s L] 0 ] 0.3677 [ 1.3903 11 3.3524

Note: Error variances (diagonal elements) were set by default.

GSas B,

This slide shows the measurement error variances and covariances for the y-variables.



- LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for x)

_LEMEDAX Matrix

Indust

Gnppcal 1.0000
Enpchl 2.1797
Indlf60 1.86182

_THETBX Matrix

Grnppohl Enpcal Indlfad
cnppctl 0. 0825 0 0
Enpcbl 1] 0.1221 0
Indlf60 1] 1] 0. 4730

Note: Error variances (diagonal elements in _THETAX_) were set by default. |

GSas B

This slide shows the results of the measurement model for the x-variables, includingthe
path coefficients and the error variances.



- LISMOD Output for the Political Democracy and
Industrialization Data (Structural Model)

_BETA Matrix

Demé 0 Demé 5
Demb0 L] ]
Dem6s 0. 8650 0

_GAMMA  Matrix

Indust
Demé 0 1.4713
Demb 5 0, 6005

: 9sas  Hs.

This slide shows the functional relationships between latent constructs.
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- LISMOD Output for the Political Democracy and
Industrialization Data (Structural Covariances)

_PST HMatrix
Demb Dembh
Dem& 0 3.9277 0
Demb 5 a 0.1667
_PHI Matrix
Indust
Indust 0.4547

| Note: All variances (diagonal elements in _PSI_and _PHI_)were set by default.

GSas B

This slide shows the error variancesof the eta-variable and the variance of the xi-variable.
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| Features of the LISMOD Modeling Language

= Supports the JKW (LISREL) models (not the LISREL
program)

= Supports mean structure analysis

= Users input:
= The ordered lists of x, y, €, and n variables
= MATRIX statements to define free and fixed parameters
= Names for parameters (not required for free parameters)

= Default covariance structure parameters of the LISMOD
language:

= Diagonal elements of all covariance matrices (all variances)

= Lower triangular elements of the PHI_ matrix (covariances of the £-
variables)

In sum, the LISMOD modelinglanguage in PROC CALIS supports the LISREL model by
providing syntaxto specify the essential components of the LISREL model. However, LISMOD
itself does notinterpret a LISREL program.

The LISMOD modelinglanguage in PROC CALIS also supports the mean structure analysis.
This is done by providingadditional MATRIX statements for the mean model matrices in the
LISREL model.

If you understand the LISREL model, here are three things you input by using the LISMOD
language:

1. Theordered lists of x, y, €, and n variables

2. MATRIX statements to define free and fixed parameters

3. Names for parameters(not required for free parameters)

The Default covariance structure parametersin the LISMOD languageare:

1. Diagonal elements of all covariance matrices (all variances)
2. Lower triangular elements of the _PHI_ matrix (covariances of the &- variables)

Specifying the default parameters explicitly is not necessary but is certainly allowed,
especially when you need to set constraints on these parameters.

In addition, when the mean structures are modeled, the intercepts of the x- and y- variables
are default free parameters, while the intercepts of the n- variablesand the means of the &-
variablesare fixed zeros by default.
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Multiple-Group Analysis

GSas B

Multiple-group analysisrepresents an important class of SEM applications.
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A Completely-Constrained CFA Multiple-Group
Model for Males and Females
Males Females
\”,' -"-. | - | V1_ ™ |
L 1 Visual Nevl || "' ' 1 o \Visual evl|
T : L] ; o _
Spatial Cubes Jevz il Spatial 82 | cibes Tyev2!
.23 -3 il - s ; i
' e uq?:
/ = “ Lozenges 4.__:"'5\!3 i i — N ev3§
| ev | fe . !
1‘._’ « Paragraph | ) EV45§i'. 1 Paragraph ":'_;e\m;
p* Verbal '—as" Sentence Devs || ! Verbal -—"—.'35 . Sentence | )evé
_ a8 e | . 3 L
;}._ = 4 \WaordMean '.-__'1 evb || F—3 ‘ ST ol
v2 \ - v2 % ,-"’ b
Data source: Holzinger and Swineford {1939) ‘
B Gsas | B

Let us use an example to illustrate the multiple-group analysis. The Holzinger and
Swineford (1939) data are used. An application to this data set is also demonstratedin
Arbuckle’s AMOS manual (2008).

In this research, visual and verbal test scores were observed. Visual, Cubes, and Lozenges
are spatial tests that measure spatial ability. Paragraph, Sentence, and WordMean are
verbal tests that measure verbal ability. CFA models were hypothesized for the two groups:
one group is for males and the other for females.

The diagrams in this slide show that the models for the two gender groups are exactly the
same. Thatis, the factor structures for the groups are the same and all parametersin the
two models for the groups are the same. The parametersare labeledin red in the path
diagram. The set of all parametersincludes factor loadings a2, a3, a5, and a6; error
variances evl-ev6; and factor variances and covariancesvl, v2, and cv.

Analyzingthe models for the two groups together form a multiple-group analysiswhere the
two groups are fitted exactly by the same model. This will be called a completely
constrained multiple-group model. How do we test the fit of this completely constrained
multiple-group model to the data? And, if this model does not fit, how do we test multiple-
group model with partial constraints?
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- Different Methods to Specify the Completely-
Constrained Multiple-Group Model

1. Two models with the same specifications and same
parameters (including the default parameters) for the
two groups

2. One model for the two groups

3. Two models for the two groups; one model makes
reference to the specification of the other model
(REFMODEL statement specification)

Let us focus on the completely-constrained multiple-group model first.

In PROC CALIS, you can use one of the following three ways to specify the preceding
completely-constrained model:

1. Male and female groups are fitted by two models with the same model
specification and with all parameters (includingall default parameters) being
constrainedin the two models.

2. Male and female groups are fitted by a single model definition.

3. Male and female groups are fitted by two models that are constrained through the
REFMODEL specification.

| will describe each of these methods. All will give you the same estimation results.
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- Method 1: Specify Two Models With Complete
Parameter Constraints for the Groups

proc calis;

group 1 / label="Males' data=males; | Models are constrained |
group 2 / label='Females' data=females; | through the use of the |
model 1 / group = 1: | same parometer names. |
path /
Spatial ===> Visual Cubes Lozenges = 1l. a2 a3,
Verbal === Paragraph Sentence Wordmean = 1. a5 a6;
pvar

Visual Cubes Lozenges Paragraph Sentence Wordmean = evl-evé,
spatial = vl, Verbal = v2;
pcov
i cOPARIAL
del 2 / gro
path
Spatial ===> Visual Cubes Lozenges
Verbal ===> Paragraph Sentence Wordmean
pvar
Visual cubes Lozenges Paragraph Sentence Wordmean = evl-evé,
Spatial = vl1, Verbal = v2;
pcov
Spatial verbal = cv;

Thal = cv;

1. a2z a3z,
1. as a6;

run;

The first method is to define two models for the two groups. The model specifications
under the two MODEL statements must be exactly the same.



- Comments on Method 1

= Constraints on parameters are set by using the same
names.

= You have to enumerate all parameters in the models in
order to constrain the two models completely.

GSas B

This method is intuitive, but a little clumsy because you need to specify all parameters with
matching names in the models (although you can cut-and-paste the model specifications to
ensure an exact copy). You also need to specify each parameterin the model, includingthe
default parameters, which you might sometimes miss.

86



- Method 2: Two Groups Fitted by the Same Model
proc calis;
group 1 / label='Males' data=males;
group 2 / label='Females' data=females;
model 1 f/ group = 1, 2; = o |*6£;;mam‘|:d§|aref'1redby
path
Spatial ===> Visual Cubes Lozenges = 1. ;
Verbal === Paragraph Sentence Wordmean = 1. ;
run;
| G§sas B

The second method is very simple and intuitive. You specify one model and fit this model
to the two gender groups. This ensures the groups are fitted exactly by the same model.
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- Comments on Method 2

= The easiest and quickest way to specify completely-
constrained multiple-group models.

= Not applicable to partially-constrained multiple-group
models.

The advantage of this method is that it is simple, intuitive, and no parameter names are
necessary for constrainingmodels. Also, you do not need to specify any of the default
parameters explicitly for setting up constraints.

This is an ideal specification method if the completely-constrained multiple-group model is
all you want to fit. However, if you are going to fit a sequence of multiple-group models
(including partially constrained models), you might want to consider the next method.
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i
J

REFMODEL Statement

|| Method 3: Model Referencing With the

proc calis;
group 1 / label='Males' data=males;
group 2 / label='Females' data=females;
model 1 / group = 1;

path
Spatial ===> Visual Cubes Lozenges = 1. ,
Verbal ===> Faragraph Sentence Wordmean = 1. ;
pvar

Visual cubes Lozenges Paragraph sentence Wordmean
Spatial Verbal:
pcov
Spatial Verbal:
model 2 / group = 2}
[refmodel 1; | —=
run; '

| The REFMODEL statement makes reference to
~ all explicit specifications in Model 1.

Note: This method is used for the completely constrained
| model and the subsequent models with parameter constraints.

The third method constrains the models by the REFMODEL statement. The REFMODEL
makes reference to all the explicit specificationsin the reference model. This means that all
explicit specificationsin the reference model are duplicated to the current model.

In this slide, all path coefficients, variance parameters, and covariance parameters are
specified in Model 1, which is fitted to Group 1 (Males). Model 2, which is fitted to Group 2
(Females), makes reference to Model 1 without any modificationsor re-specifications.
Therefore, Model 1 and Model 2 are exactly the same---in other words, they are
completely constrained.
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i Comments on Method 3

= All explicitly specified parameters in the reference
model are applied to the model that refers to it.

* For completely-constrained multiple-group models, you
still need to specify all parameters in the reference
model. However, parameter names are not necessary.

= |tis the most convenient method to set up partially-
constrained multiple-group models.

It is importantto recognize thatin order to completely constrainthe two models for the
two groups, all parameters, includingthose could have been set by default by PROC CALIS
(e.g., specificationsin the PVAR statement and PCOV statement), must be specified
explicitly in Model 1. That way Model 2 will copy all these parameter specifications via the
REFMODEL statement specification.

Like Method 1, the use of REFMODEL statement in Method 3 for specifying completely
constrained models requires the enumeration of all parameters. However, Unlike Method
1, method 3 does not require the use of parameter names for setting constraintsacross
models. Constraintsare done via the REFMODEL statement. Although not as intuitive as
Method 2, this method would be more useful if you need to fit a sequence of multiple-
group models, which will be illustrated later.
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Fit Summary of the Completely Constrained

-
Multiple-Group Model
Fit sSummary
Chi-Square 26.0154
Chi-Sgquare DF 29
Pr > Chi-square 0.6247
Standardized BMR (SRMR) 0.0968
Adjusted GFI (AGFI) 0.9235
RMSEA Estimate 0.0000
Akaike Information cCriterion 52.0154
Bozdogan CAIC 103.7130
Schwarz Bayesian Criterion 90.7130
Bentler Comparative Fit Index 1.0000

The completely-constrained multiple-group model provide a good fit of the data. The
model fit chi-square is not significant. The RMSEA is perfect, although the SRMR is not very
good. The AGFI and the CFl are also good. The AIC, the CAIC, and the SBC are also included
in this table. These indices cannot be interpreted by their absolute values, but will be useful
when you compare the fit of different multiple-group models. You will use these indices to
select the “best” multiple-group model for the data later.
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- Fitting Less Restrictive Multiple-Group Models

= Completely-constrained multiple-group model: Error
variances, structural covariances, and loadings are all
constrained

= Release the constraints on error variances

= Release the constraints on structural covariances

= Release the constraints on the loadings — Completely
unconstrained

We havefitted the completely constrained multiple-group model by the REFMODEL
method (Method 3). We can fit less constrained multiple-group model by modifying our
PROC CALIS code.

We can release the constraints on error variances. Then we can release the constraints on
the structural covariances (among latentvariables). Finally, we can release the constraints

on the path coefficients (or loadings).

| am going to show these step by step.
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- Release the Constraints on Error Variances
Males Females
V1;’ﬂ\ . ¥y
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The path diagrams for the multiple-group model that releases the constraintson the error
variances are shown above.

Except for the error variance parameters, all the remaining parametersare labeled. This
means that only the error variance parameters are not invariantacross the models for the
groups.



Releasing the Constraints on the Error Variances

proc calis;
group 1 / label='Hales' data=males;
group 2 / label='Females' data=females;
model 1 / group = 1;

path
Spatial ===> Visual Cubes Lozenges = 1.
Verbal === Paragraph Sentence Wordmean = 1. ;

pvar
gpatial verbal:
poov
_____ Spatial Verbal;
(model 2 / growp = 27
refmodel 1:
un;s

Comment out the error variance specifications in the PVAR statement, and let PROC CALIS -
set two distinct sets of default error variances for the two models.

In terms of PROC CALIS specification, this means that the model for females makes
reference to the model for males with regard to those constrained parameters only.

This could be done very easily by modifying from the completely constrained multiple-
group model. All you need to do is to comment out the PVAR statement specifications for
the observed variables.

When Model 2 makes reference to Model 1, only those explicit specifications would be
constrained between the two models. Because the error variances are not specified in both
models (that is, they are commented out from the previous code), PROC CALIS would
generate different sets of default error variance parameters for the two models. In other
words, the error variance constraints are released in this PROC CALIS specification.
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- Fit Summary of the Multiple-Group Model with
Constraints on Loadings and Structural Covariances

Fit sSummary
Chi-Square 22.0334
Chi-Sgquare DF 23
Pr > chi-square 0.5182
Standardized RMR (SRMR) 0.0803
Adjusted GFI (AGFI) 0.9163
RMSEA Estimate 0.0000
Akaike Information Criterion 60.0334
Bozdogan CAIC 135.5913
Schwarz Bayesian Criterion 116.5913
Bentler Comparative Fit Index 1.0000

The model fit chi-squareis not significant, indicatinga good model fit. The RMSEA, the
AGFI, and the CFl are all good. However, the SRMR does not indicate a good model fit.
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- Release the Constraints on the Structural
Variances and Covariances
Males ' Females
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How about releasing the constraints on the structural covariances?

In the path diagram, only the path coefficients are now constrained (by using the same set
of parameternames). This means that only the path effects are invariantacross the models
for the groups.



i Releasing the Constraints on the Error Variances
and Structural Covariances

proc calis;
group 1 / label='HMales' data=males;
group 2 [/ label='Females' data=females:
model 1 / group = 1;

path
Spatial ===> Visual cubes LoZenges = 1. .,
Verbal ===> Paragraph Sentence Wordmean = 1. !

model 2 / group = 2:
refmodel 1;
run;

Comment out the PVAR and PCOV statements, and let the PROC CALIS set
twao distinct sets of default variances and covariances for the two models.

=.t-n.m ! SSaS s

This new multiple-group model can be specifying by commented out the explicit
specifications of the structural covariances (variances and covariancesamong latent
variables)in Model 1.

When Model 2 makes reference to Model 1, it copies the explicit specifications in the PATH
statement of Model 1. Error variances, structural variances and covariancesin the two
models are now set by defaultand are unconstrained between the two models.
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- Fit Summary of the Multiple-Group Model with

Loading Constraints

Fit Summary

Chi-Square 18.
Chi-Square DF

Pr > Chi-Square 0
standardized RMR (SRHMR) 0
Bdjusted GFI (AGFI) 0
RHMSEA Estimate 0.
Akaike Information Criterion 62.
Bozdogan CAIC 145.
Schwarz Bayesian Criterion 127.
Bentler Comparative Fit Index 1.

2915
20

.5682
.0539
L9179

0000
2915
7796
7796
0000

The model fit chi-squareis not significant. Now, the SRMR is more acceptable. The AGFI,

the RMSEA, and the CFl continueto be very good.

GSas B,
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- Release the Constraints on the Loadings

Finally, for the completely unconstrained multiple-group model the path diagrams for the
two groups are the same, but no parameter names (except for fixed values of 1) are used to

denote constraints.
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| Commen parameter nomes for the loadings are removed. |

GSas B
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- Completely Unconstrained Multiple-Group Model

proc calis;
group 1 / label='Males’' data=males;
group 2 / label='Females' data=females;
model 1 / group = 1;

path
Bpatial ===> Visual Cubes Lozenges = 1l. .,
Verbal === Paragraph Sentence Wordmean = 1. ;
model 2 / group = 2;
path
Spatial ===> Visual Cubes Lozenges = 1. ,
Verbal ===> paragraph Sentence Wordmean = 1. :

Iumn;

The REFMODEL statement is not used here because the parameters in the
two models are not constrained with each other.

aany | SSaS Pon

268 &

Because the two models for the groups are totally unrelated, you do not need to use the
REFMODEL statement any more. Instead, the two models are defined exactly by the same
PATH statement specifications. However, because no common parameter names are used
for the path coefficients, the two models are not constrained (except for the same set of
identification constraints with fixed 1).
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- Fit Summary of the Completely Unconstrained

Multiple-Group Model

Fit Summary

chi-square

chi-square DF

Pr > Chi-Square

Standardized RMR (SEMR)
Adjusted GFI (AGFI)

EMSER Estimate

Akaike Information Criterion
Bozdogan CARIC

Schwarz Bayesian Criterion
Bentler Comparative Fit Index

16.

(== =]

68.
171.
145.

4795
16

.4200
.0449
L9077
.0205

4795
8746
8746

.9984

The unconstrained SEM model for the groups gives you the best fit,
but it is also the least interesting multiple-group medel.

GSas B,

All fit indicesindicate very good fit of the unconstrained multiple-group model.
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- Chi-Square Difference Tests for the Nested

.
Multiple-Group Models
Constrained
completely Loadings and Constrained
Constrained Struct. Cow. Loadings
Conetrained Loadings and 3.892
Structural Covariances (p=0.32)
Constrained Leoadings 7.724 3.742
{p=0.44) {p=0.71)
Completely Unconstrained 5 .536 5 .539 1.182
{(p=.2T) {p=.41) (p=.23)

| There are no significant differences between the multiple-group models. |

— GSas B,

(X X}

Which modelis the best for the data?
Chi-square difference tests provide a statistical method to see if models are significantly
different from each other. This slides shows the chi-square difference tests for comparing

the four multiple-group models. (Note: this table is not a part of the SAS output.)

As all p-values are bigger than 0.05, it means that all these multiple-group models are not
significantly different from each other.
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Comparing Model Fits by Using Various Fit Indices

Constrained

Completely Loadings and Constrained Completely

Constrained Struct. Cov. Loadings Unconstrained

Chi-Square 26.0154 22.0334 18.2915 16.4795
Chi-Square DF 29 23 20 16
Pr > Chi-Square 0.6247 0.5182 0.5682 0.4200
Standardized RME (SRIMR) 0_0968 0.0903 0.0539 0.0449
Adjusted GFI (AGEI) 0.9235 0.2163 0.9179 0.9077
EMSEA Estimate 0.0000 0.0000 0.0000 0.0205
Rkaike Information Criterion 52.0154 60.0334 62,2915 68 .4795
Bozdogan CAIC 103.7130 135.5913 149 .7796 171.8746
Schwarz Bayesian Criterion 90.7130 116.5913 127 .7796 145 .8746
Eentler Comparative Fit Index 1.0000 1.0000 1.0000 0.9984

Absolute indices: Chi-square, SRMR (smaller is better)
Parsimonious indices: AGFI (larger is better),

RMSEA, AIC, CAIC, SBC (smaller is better)
Incremental indices: Bentler CFI (larger is better)

' Osas | B,
_ G, s v e DSAS |

We can also compare the four models by means of the fit index values.

The model fit chi-square value alwaysfavors the model with the largest number of
parameters. So, according to the model fit chi-square, the completely unconstrained model
is the best model. The SRMR also favors the completely unconstrained model simply
because it can be viewed as a monotone transformation of the chi-square value. However,
you should not select your best model based on the absoluteindices such as model-fit chi-
square value or the SRMR value because these indices do not take model parsimonyinto
account. Complicated models might have perfect model fit chi-square and SRMR values
(thatis, 0). But these complex models should not be selected as the best models because
they havevery little scientific value.

The AGFI, the RMSEA, the AIC, the CAIC, and the SBC all takes model parsimonyinto
account. For the AGFI, the larger the better. For other indices, the smaller the better. All
these parsimoniousindices pointto the completely constrained model as the best multiple-
group model for the data.

Lastly, the incremental fit index Bentler CFl favors the completely constrained model too.
However, virtually all multiple-group modelin this comparison are equally good according
to the CFl. Notice thatincrementalindices such as the CFl measures how a target model
measures better than a so-called baseline model. They do not take model parsimonyinto
account. In addition, they depend on how good the baseline modelis used in the computing
formula. If the baseline model is very bad (such as the commonly-used uncorrelatedness
model), all competing models would have good incremental fit only because the baseline
model is much worse. For this reason, incremental fit indices might not serve as good
criteria for model selection.
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i Ideal Characteristics of the “Best” Model
Among Competing Models

= Smallest values in the fit indices that takes model
parsimony into account. For example, RMSEA, AIC,
CAIC, SBC.

= Acceptable absolute and comparative fit statistics. For
example, SRMR less than .05 and Bentler's CFl larger
than .9.

= Substantively meaningful.

When you fit a set of competing models for your data, you should select your models
based on the fit indices that take model complexity into account. Parsimonious fit indices
such as RMSEA, AIC, CAIC, and SBC could be used. These indices might not pointto the
same “best” model. If they do point to same model pretty consistently, then you might also
need to check if the absolute fit indices or other fit indices of the best models are good
enough---much like how you judge the fit of an individual model. Simply being the best
competing model does not necessarily imply that the model fits the data well. The RMSEA,
SRMR, CFl, and etc. of the best competing model must also be acceptable.

Finally, substantively meaningful models with reasonablefit are preferred to complex
models with very good fit that are due to ad-hoc modifications.
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Analyzing Direct and
Indirect Effects
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- Democracy and Industrialization Data: Direct and
Indirect Effects of Industrialization

Demgo

e

a Indust

Analyzingdirect and indirect effects is something unique to SEM.

Let us look at the model for the democracy and industrialization data. Only the structural

part of the SEM is shown to illustrate the idea.
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L

Industrialization Effects on Democracy in 1960

and 1965
* On democracy in 1960
A direct effect: ;
Indust ===>Dem&0 ~ Demt&0

~

* On democracy in 1965 _ ,
A direct effect: . Indust |
Indust ===>Dem65 :
An indirect effect: Nyads
Indust ===>Dem6&0 ===>Dem6&5 | Bemes

= Total effect = direct effect + indirect effect

First, let us look at the effect of industrialization onthe democracy measure in 1960
(Dem60). The direct effect of Indust on Dem60 refers to the path Indust ===> Dem60. This
effect can be estimated directly from any SEM software.

On the democracy measure in 1965 (Dem65), industrialization has a direct and indirect
effect.

The direct effect refers to the path Indust ===> Dem65. The indirect effect is indicated by
the track Indust ===> Dem60 ===> Dem65.

When you add up the direct and indirect effects, it gives you the total effect.

In SEM, the direct effects are estimated as the path coefficients. Indirect effects and total
effects are functions of the parameter estimates. Fortunately, PROC CALIS can compute
these functions efficientlyand it can also provide standard error estimates for these
effects.

107



- Factors Affecting Mental Abilities: A Model Inspired by
Marjoribanks (1974)

‘51 ‘52‘ ss‘ P1‘ P2 ‘PB M1 ‘M? MS‘
Social Status Paana | Mental Ability

Encouragement

¥ T

Family Size Achievement
y \ Motivation

Al AZ A3

This slide shows a more interesting example aboutanalyzingdirect, indirect, and total effects.

The exampleis inspired by a model of Marjoribanks (1974). The current model is a simplification
and the data are generated. The results here do not representthe original study, but would serve
well for our purpose.

The main idea of the study is to model the mental ability of students. The mental ability is a latent
construct, which is supposedto be determined (predicted) by parental encouragementand
achievement motivation, both of which are formulated as latent construct in the model. Two
remote causes (predictors), social status and family size, have direct effects on parental
encouragementand achievement motivation. However, these two remote causes affect the mental
ability only indirectly. Social status is also formulated as a latent variable, while family size is an
observed variable. For all the latent variables, observedindicators are used and they are
represented by small rectangles in the path diagram.

There are some motivating questions aboutthis path diagram regarding the direct and indirect
effects. For example,

1. Even though social status does not affect the mental ability, it does have an indirect effect on
the mental ability via parentalencouragementand achievement motivation. One would like the
SEM software to compute this this indirect effect and to test its significance.

2. Parental encouragementhasa direct and an indirect effects on the mental ability. Whatis the
overall total effect of parental encouragementon the mental ability. One would also like the
SEM software to compute all these effects and to test their significance.
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ﬁ Factors Affecting Mental Abilities: PROC CALIS Code

proc calis data=mental nobs=115 effpart; L -

path . The EFFPART option analyzes the |

effect partitioning in the model.

/* Structural Model */
SocialStatus ===> ParentalEncouragement FamilySize

AchievementMotivation,

FamilySize ===> AchievementMotivation,
ParentalEncouragement ===> AchievementMotivation Mentalability,
AchievementMotivation ===> Mentalability,

/* Measurement Model */f
Soclialstatus ==> gl 82 83 =
ParentalEncouragement ===> Pl P2 P3

AchievementMotivation ===> Al A2 A3
Mentalability ===> M1 M2 M3

Il
I i

run;

Now, the PATH specification for the target model should be easy for you. You can specify
the measurement model and the structural model by the multiple-path syntax. You can
look at the path diagram and write down the paths in the PATH statement. Notice that each
pathin the path diagram represents direct effects of one variable on other variables.

The only new optionintroduced here is the EFFPART optionin the PROC CALIS statement.
EFFPART stands for effect partitioning. In other words, it partitionsthe total effects of any
variable on any other variableinto direct and indirect effects. PROC CALIS compute these
effects and the standardized version---all with standard error estimates provided.
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- Fit Summary

Fit Summary

The model fit actually does not look too good for this simulated data. But this is not the
concern here. We want to study the effect partitioningwith the current example. In the
subsequent discussion, | assume that we are satisfied with the model fit so that the

discussion of the effects would be meaningful.

Standardized RMR (SRMR) 0.0936
Adjusted GFI (AGFI) 0.7341
RMSEA Estimate 0.1431
Bentler Comparative Fit Index 0.8087
Not a very good model fit.
@4 :
' §Sas B
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Factors Affecting Mental Abilities: Estimation Results

‘81‘82‘83‘ P1‘P2‘F’3
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Before divinginto the results for effect partitioning, | want to look at the estimates shown
in the path diagram. | wantto throw in one more motivationto study direct and indirect
effects in this structural equation model.

In this path diagram, estimates are shown with their significance marked. Two asterisks
after an estimate means the estimate is statistically significant. One asterisk after an
estimate means that the estimate is marginally significant.

| want to focus on the effects of parental encouragementon mental ability. The direct
effect is -1.73. This means that parental encouragement has a negative direct effect on
mental ability. This sounds a little strange at the first glance. But if we look at the bigger
picture in the path diagram, we can understand why that is so. Notice that parental
encouragement has a positive effect on achievement motivation, which in turns has a
positive effect on mental ability. The whole picture suggests that purely parental
encouragementdo not necessarily affect mental abilityin a positive way. Sometimes, the
more encouragement would only add more pressure to the individual’s mental
performance---hence the negative direct effect on mental ability observed in the path
diagram result. However, when the parental encouragement can affect something more
internal of the individuals---namely, the individual’sachievement motivation, then it will
result in a higher mental ability score. Hence, there is a positive indirect effect of parental
encouragementon the mental ability.

In sum, aninteresting questionin this path diagram result is that what is the overall total

effect of parental encouragement on mental ability, given that it has a negative direct effect

and a positive indirect effect?
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- Partitioning of the Effects: A Prerequisite

Stability Coefficient of Reciprocal Causation = 0
Stability Coefficient < 1

Total and Indirect Effects Converge

NOTE: The stability coefficient is 0, which is less
than one. The condition for converged total and

indirect effects is satisfied.

Before you can analyze direct and indirect effects, you should check whether a prerequisite
is satisfied. In order to study the effect partitioninglegitimately, the so-called stability
coefficient must be less then 1. PROC CALIS provides such a check. The checking of this
stability coefficientis important. When you see the messages in this slide from the PROC
CALIS output, you could proceed to examine your effect partitioning results. Otherwise, if

the stability coefficient is not less than 1, you cannotinterpretthe indirect and total effects.
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- Partitioning of the Effects: Total Effects

With the EFFPART option, PROC CALIS produces tables for total, direct, and indirect effects
separately. These tables could be large. | just annotate these results here. Some results are

not shown.

This tableis about the estimates of the total effects, their standard errors, t-values, and

Total Effects

Effect / ¥td Errez / © Valus / p Valus

Fami lyEize

Al -0.1287
a.0380

=3, 5763

0. 000345

= ~0. 1520
0.0420

~A.62M

0. 000288

Bemralfha lity 0. 1693
0.0872

—2.969€

0. 0oZsaz

Doy oot ol Bnourasemant o

Achievenart
Motivec1on

L.o00o

L.1@zl
0.1084
lo.s012
<.000L

L ?Lf?é
0.41z4
2.1958
0. 001377

Mantal
kbdlicy

o

Parertal
Hroour agenant

.

1.5701
0,8178
3, 0337
ODZ4L6

1. 8660
0.£051
3.0672

-00Z161

0. 376
0. 4045
0. 234e
0. 402

Socamlftatus

0.6523
0,034z
6.9258
<.0001

0.7710
0.1026
7.4358
<.0001

0.4244
0. 1280
3.3189
0.0008L4

0. 25Le
0.063%
3. 6356
0.000277

significance levels.

GSas B

113



- Partitioning of the Effects: Direct Effects

Tirect Effects
Effect / Std Eveor / ¢ Value / p Value
AT venent. Mental, Parental
FamilySice Hotivation Abdlity B agement.
E:8 o 10008 ] ]
nz [ 11871 ] []
0,108
RURT
TS
Hemtal Wity ] 13196 ] -1.7343
03124 0. 9047
31995 -1 %163
0. 01377 00553
Parent ol Encouragenent. o L] L L]

b 251¢
b 892
EN %1
0. poezT?

- Details
| omitted.

This tableis about the direct effects, their standard errors, t-values, and significance levels.

GSas B
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This tableis about the indirect effects , their standard errors, t-values, and significance

levels.

Partitioning of the Effects: Indirect Effects

Indirect Effects
Erffect f 5td Frror § ¢ ¥alwe [ p Yalue

Pl vanent Mental
FoaniLySize Yotivation Fbdlity

n ~0.1297 o L]
[N =1
-3.576%
[RTTEE

3 -0.1522 L] L}
00420
-3.62M
0. 080286

Yental R lity -0, 1633 o L
0.0572
~2.3636
b 002582

Parent alEncowraganant » ] [

Parental
Encour agement.

1.5M1
0.51%6
30327
000316

1. 8960
06051
30672
0 082161

20019
1.0483
1.9%3
0.

SocialStatus

0. 6523
0.0z
. 9264
<. 0a01

[ Bri it
01036
7. 4398
<. 0001

. Details

i omitted.

0 3244
o 1280
A.3159
LR EY
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ﬁ Customized Effect Analysis

= The EFFPART option displays all logical possible effects
of the variables

= Columns: Five variables, each of which serves as a
predictor at least once:

o FamilySize

o AchivementMotivation

o MentalAbility

o ParentalEncouragement
o SocialStatus

= Rows: Sixteen variables, each of which serves as an
outcome variable at least once (all variables except for
SocialStatus)

When you have large tables like those shown in previousslides, you are likely to be doing
exploratory analysis without specific questionsin your mind. The effect tables could get
very large and you might have a difficult time to look for the particularresults that you are
interested in. For example, the columns of the effect tables consist of five variables, each of
which serves as a predictor at least once in the path diagram. These five variables have
direct or indirect effects on the row variables. The rows consist of sixteen variables, each of
which serves as an outcome variable at least once. In the current path diagram, it includes
all variables except for the SocialStatusvariable.

However, if you have specific research questionsin your mind, you are recommended to do
the customized effect analysis, which is supported by PROC CALIS.
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- Customized Effect Analysis on the Structural Model

and indirect effects of

What are the total, direct, |

| What is the total effect of
| parental encouragement on

this remote cause on other |
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Family Size Motivation 4

In the beginning, we already have these motivatingquestions.

1. Forthe social statusvariable, What are the total, direct, and indirect effects of this

remote cause on other latent constructs, especially on mental ability?
2. Whatis the total effect of parental encouragementon the mental ability?
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i Factors Affecting Mental Abilities: Customized
Effect Analysis

proc calis data=mental nobs=115;
path
/* Structural Model */
SocialStatus ===> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize ===> AchievementMotivation,
ParantalEncouragement ===> AchievementMotivation Mentalability,
AchievementMotivation ===> Mentalability,

/* Measurement Model */

SocialStatus ===> 51 52 83 = Ly
ParentalEncouragement ===> P1 P2 P3 = 1. ;:EHE“FF&:IZL?;T::;?
AchisvementMotivation ===> Al A2 A3 = 1., effects of interest.
| Mentalability ===y MINZM3 =1.; = e
effpart i
Socialstatus ===> ParentalEncouragement AchievementMotivation I
MentalAbility, i
ParentalEncouragement ===> HMentalAbility:

eoeww SSaS %‘

268 &

PROC CALIS supports the customized effect analysis. This can be done by the EFFPART
statement, as shown in the PROC CALIS codein this slide.

First, you want to study the effect partitioning of social status on these three variables:
parental encouragement, achievement motivation, and mental ability. Hence, you use the
following code in the EFFPART statement:

SocialStatus ===> ParentalEncouragement AchievementMotivation
MentalAbility,

Second, you want to study the effect partitioning of parental encouragementon mental ability.

Hence, you use the following code in the EFFPART statement:

ParentalEncouragement ===> MentalAbility;
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- Effects of Social Status
Effects of SoccialStatus
Effect / Std Ervor / t Value / p Value
Total Direct Indirect
ParentalEncouragement 0.2h16 0.2516 o
- 3 0.0692 0.0692
Direct effect only 3.6356 3.6356
0. 000277 0. 000277
AchievementMot ivat ion 0.6523 0.2193 0.4330
s 0.0942 0.1147 0.1203
| Direct ond indirect effects |
ot ettt v 6.9258 1.9125 3.5985
<. 0001 0.0558 0. 000320
MentalRbility 0.4244 0 0.4244
i 0.1280 0.1280
3.3159 3.3159
0.000914 0.000914

eoeww SSaS %‘

268 &

The effect partitioningresults from PROC CALIS are shown in this slide and the next one.
The effects of social status on the three specific latent variables are shown in this table.

On the parental encouragement, social status has a direct effect only, which is positive and
significant.

On the achievement motivation, social status has both a direct and an indirect effects. Both
of these effects are significant. The total effect is the sum of the direct and indirect effect.

The total effect is also significant.

On the mental ability, social status has only an indirect effect, which is also significant.
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|| Effects of Parental Encouragement on Mental Ability

Effects of ParentalEncouragement

Effect / Std Error / t Walue / p ¥alue

Total Direct Indirect

Mentalfbility 0.3376 -1.7343 2.071%9
0.4045 0. 9047 1.0483

0.8346 -1.9169 1.9763

0.4039 0.0553 0. 0461

Parental encouragement has a positive total effect on the |
mental ability, although the total effect is not significant. |

This slide shows the effect partitioning of parental encouragement on mental ability.

The direct effect is negative, as shown previouslyin the path diagram. This direct effect is
marginally significant.

The indirect effect is positive and is statistical significant. This is a piece of “comforting”
information---parental encouragement does affect the mental ability positively, but only
through its effect on achievement motivation.

The total effect, which is the sum of direct and indirect effect, however, is not significant.

This example shows that SEM effect analysiscan show some effect patternsthat simply
cannot be analyzed by linear regression analysis adequately. The SEM effect analysis
provides something more detailed and refined regarding the totality of the theory. In this
regard, the customized effect analysissupported by PROC CALIS is very useful.
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- Standardized Effects of Social Status

Parent alEncouragement

AN @ e o
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A m e o
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Standardized Effects of Socialstatus
Effect / Std Error / t Value / p Value

Direct

LG6ETS
-0B33
-0141
-0ooL

A @ o o

-2350
1207
-9478
-0514

[=T = - |

Indirect

LA640
L1153
L0231
LD00L

AR T2

L4960
L0Bs0
L8374
L0001

AWM @

PROC CALIS also providesthe standardized results for effect analysis. Standard errors, t-

GSas B

values, and p-values are also computed for the standardized effect estimates.
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- Standardized Effects of Parental Encouragement
on Mental Ability

stamdardized Effects of ParentalEncouragement
Effect / std Error / t Value / p Value

Total Direct Indirect

Mentalability 0.1487 -0.7639 0.2126
0.1705 0.3096 0.3487

0.8722 -2.4875 2.6171

0.3831 0.0136 0. D0BHGY

( Paramul encouragement has a positive standardized
| total effect on the mental ability. although the
| standardized total effect isnot significant.

% GSas B

'Y 1

This slide shows the standardized effects of parental encouragementon mental ability. The
patternis quite similar to the unstandardized version.
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Creating Path Diagrams
(SAS/STAT 13.1)

0sas | B

Creating path diagrams from PROC CALIS is a new capabilityin SAS/STAT 13.1.
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i PLOTS=PATHDIAGRAM Option

ods graphics on;

proc calis data=mental nobs=115 plots=pathdiagram’
path
/* structural Model */
Socialstatus ===> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize ===> AchievementMotivation,
ParentalEncouragement ===> AchievementMotivation MentalAbility,

AchievementMotivation ===> Mentalhbility,

/* Measurement Model */

Socialstatus === §1 52 &3 = 1.,
ParentalEncouragement ===> P1 B2 P3 =1.,
AchievementMotivation ===> Al AZ A3 = T
HMental&bility ===> M1 M2 M3 =1.;

GSas B

PROC CALIS can create path diagrams automatically from model input. This example uses the

same dataset aboutachievement motivation.The simplest way to create path diagrams
from PROC CALIS is to use the PLOTS=PATHDIAGRAM option in the PROC CALIS
statement.
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I Path Diagram for the Full Model

Unstandardized Salution

il

GSas B

This is the default path diagram for the unstandardized solution. Estimates that are flagged
with “**” are significant at the 0.01 alphalevel.

Estimates that are flagged with “*” are significantat the 0.05 alphalevel. A fit summary
tableis also shown.
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- PATHDIAGRAM Statement

0ds graphics on:
proc calie data=mental nobg=115:

path
SocialStatus ===> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize ===> HAchievementMotivation,
ParentalEncouragement ===> AchievementMotivation MentalAbility,

RchievementMotivation ===> MentalRbility,
Socialstatus ==> 51 52 53 =1,
FarentalEncouragement ===> Pl F2 P3 = 1.,
AchievementMotivation ===> Al A2 A3 = 1.,
Mentalability =—=> M1 M2 M3 = 1.
pathdiagram structural (enly) structadd=[FamilySizs]
nofittable arrange=flow novariance
label=[SccialStatus ='Social Status’
FamilySize = "Family Size~
FarentalEncouragement = "Parental Encouragement’'
AchievementMotivation = "Achievement Motivatien’
HMentalhbility = "Mental Rbility']:

run;

Showing the full model might not be the best way to present the main ideas of your
fitted model. In structural equation modeling, researchers sometimes focus on the
structural component of the model only. The reason is that most of the causal
interpretations apply to the structural relationships only. You can customized path
diagrams that show only the structural components of the models. The customization is
done by using options in the PATHDIAGRAM statement. For example, the

STRUCTURAL (ONLY) option requests to creation of the path diagram for the structural
component only.

Traditionally, the structural component refers to the part of the model that include
only the latent factors and their corresponding functional relationships. This seems
to be a good definition for the LISREL-type models only. In general, variables that
are supposed by be measured without measured errors could be included in the
structural component. In this example, FamilySize is an exogenous variable in the
model and it is measured without errors. To include this variable in the path
diagram the STRUCTADD= option is used. Otherwise, the FamilySize variable will not be
included in the path diagram.

Other options in the PATHDIAGRAM statement include:

1. The NOFITATBLE option suppresses the display of the fit summary table.

2. The ARRANGE=FLOW option requests the use of the FLOW layout algorithm so that the
causal ordering of the effects is emphasized. If you do not use this option, the
layout algorithm is automatically determined.

3. The NOVARIANCE option suppresses the display of all variance estimates so the path
diagram will have a cleaner look.

4. The LABEL= option specifies the labels be used in the path diagram. In this
example, the labels used are actually similar to the original names---only that
appropriate spaces are added in the labels. This would help the layout algorithm
find proper breaks of character strings when encountering long texts.
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- Path Diagram for the Structural Model

D.22

Gsas | Bs.

The structural model shows a much cleaner picture for presentation.
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Testing Specific
Hypotheses
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Testing Hypotheses about the Measurement Model

vl v2 v3._, ;
é V. & N &
51 S2 ‘ S3 ‘ M1 ‘ M2 M3
g o2 ™ [r2_ e
Social Status } Mental Ability

Testing specific hypothesesis an interestingtopic. Here we look at some examples.

In the mental ability model, you have some indicatorvariablesfor the latentvariables. Two
latentvariablesare selected to illustrate the testing of specific hypotheses.

For the mental ability factor, one might want to test the hypothesisthat the loadings (path
coefficients) are the same for the M2 and M3 indicators. In the path diagram,r2 and r3 are
labeled as the path coefficients. You want to test whether r2 and r3 are equal within the
model.

For the social statusfactor, you not only want to test the hypothesisthat the loadings(path
coefficients) are the same for the three indicators, but you also want to see if their
correspondingerror variances are the same in the population. In the path diagram, g2, g3,
vl, v2, and v3 are parameters of interest. You want to test simultaneously whether g2, g3
are equalto 1 and vl, v2, and v3 are the same in the population.
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ﬁ Specific Hypotheses

= Parallel items for measuring SocialStatus
H1:92=1
H2: g3=1
H3: v1=v2
H4: v2 =v3

= Equality of loadings for MentalAbility items M2 and M3
HS:r2=r3

= Sum of the loadings for M2 and M3 is two times as
much as the sum of the loadings for S1 and S2

HE: (r2+r3)/(g2+g3)=2

The test of equalloadings and equal error variances for the social status items is a test of
parallelitems. This could be stated more formally as the following four component
hypotheses H1, H2, H3, and H4, as shown in the slide. These four hypotheses need to be
tested simultaneously. Rejection of the simultaneoustest means the items are not parallel.

The test of equalloadings for the measurement indicators of the mental ability factoris
simpler. It is stated in H5. Rejection of H5 means thatr2 and r3 are not equal in the
population.

Finally, you can inventany strange hypothesis that can be expressed as a continuous
function of the model parameters. For example, H6 states that the ratio of the sum of r2
and r3 to the sum of g2 and g3 is 2. This hypothesis may or may not make sense. But it is
included here to demonstrate the flexibility of PROC CALIS.
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- PROC CALIS Hypotheses Testing: h(8) =0

* Parallel items for measuring SocialStatus:
H1:h1=g2—1 =0
H2: h2=g3—1 =0
H3:h3=vl—v2 =0
H4: h4=v2 —v3=0

= Equality of loadings for MentalAbility items M2 and M3
H5:h5=r2—r3=0

= Sum of the loadings for M2 and M3 is two times as
much as the sum of the loadings for S1 and S2

H6: h6=2(g2+g3) —(r2+r3)=0

Before | show you the PROC CALIS code, it is useful to reformulate the hypothesesinto the
forms that match the PROC CALIS input.

PROC CALIS tests hypotheses of the form h(0)=0, where h(8) is any continuousfunction of
the model parameters (for example, the error variancesand the path coefficients in the
model).

The hypothesesin the previousslide could all be rewritten in this required form, as shown
in this slide. With these forms, you are ready to specify those hypothesesin PROC CALIS.
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| Testing Specific Hypotheses about the Measurement
Model Using PROC CALIS

proc calis data=mental nobs=115;
path
Social5tatus ===»> FarentalBncouragement FamilySize AchievementMotivation,
FamilySize ===> AchievementMotivation,
FarentalEncouragement ===> AchievementMotivation MentalRbility,

AchievementMotivation ===> MentalRbility,
SocialStatus ===> 51 52 53 =1. g2 g3, Speci'f 92,63, r2, 13, v1, v2, and
ParentalEncouragement ===> P1 P2 F3 = 1., | v3 explicitly.
AchiavementMotivation ===> Al A2 23 = 1.,
HMentalRbility ===> M1l M2 M3 =1, 2 x3;
 PERE SERSS MRSRRR | Use the SIMTEST statement to
simtest parallel social items=[hl h2 h3 h4]: /0 tast iimulfunmusly hypo‘lhﬁu.
testfunc h5_equal load m2? m3 hé_proportional sum; | Use the TESTFUNC statement
Bl = g2 - L; | to test individual hypotheses.
h? = vl = w2: Use the SAS programming
hd = v2 - w3- | statemants todu.fine I1he |
hS_equal load m2 m3 = r2 - r3; | paremetric functions in the tests.
hé_proportional sum = 2*{g2 + g3) - (r2 + z3);

run;

First, you have to label or name the parametersin the correct locations of the model specification.
For example, g2 and g3 are the path coefficients for S2 and S3, respectively; andr2 and r3 are the
path coefficients for M2 and M3, respectively. Notice that you did not name these parametersin
the preceding model specifications. Namingthese parameters were optional because you did not
need to make reference to them. However, because you are going to refer to these parametersin
the hypothesis tests, you must name or label them in the respective locationsin this example.
Similarly, the error variances for S1-S3 are named as v1-v3, as shownin the PVAR statement.

The main tools for testing specific hypothesisin PROC CALIS are the SIMTESTS and the TESTFUNC
statements.

The SIMTEST statement enables you to test simultaneous hypotheses like the parallel hypothesis
with four componenthypotheses. Here we have h1l, h2, h3, and h4, all of which are treated just as
the names of the hypotheses that are defined later.

The TESTFUNC statementenables you to test individual hypotheses like the equality of loadings and
the proportionality hypotheses described previously. Here | use long names such as
h5_equal_load_m2_m3andh6_proportional_sumto remind me of the nature of the target
hypotheses.

Now | use the so-called SAS programmingstatements to definethe hypotheses: h1-h4,
h5_equal_load_m2_m3,and h6_proportional_sum.The SAS programmingstatements are just like
common mathematical equations. These six SAS programming statements define the parametric
functionsin the target hypotheses. PROC CALIS tests all parametricfunctions equaling zero.
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- Individual Tests of Parametric Functions:
TESTFUNC Results

Tests for Parametric Functions

Parametric Standard

Function Estimate Error t Value Pr > | t|
h5_equal_ load M2 M3 0.04147 0.24290 0.1707 0.8644
hé_proportional sum -0.27995 1.02816 -0.2723 0.7854

Both individual hypotheses are supported.

The TESTFUNC specification produces the results shown in this table.

You fail to reject the equality of loadings for M2 and M3 because the p-valueis bigger than
0.05. So, the equality of the loadingsis supported.

You also fail to reject the proportional sum hypothesis (p-value=0.79).
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Tests for Parallel Social Status Items:

Simultaneous Tests

simultanecus Parametria Funct ion

Test Function VYalue DE Chi-Square P ¥Yalue

parallel social items 4 24. 23862 <. 0001
hl 0. 19873 1 3.57013 0. 0588
h? -0, 25004 1 0.37521 0. 0038
h3 -0, 24067 1 0. 17774 0. 6733
hi -0. 64108 1 1.49312 0. 2217

Qverall parallelism hypothesis is not supported for the SocialStatus items, although
the equality of error variances is supported.

... gsas E=.

The SIMTESTS statement specification produces the output shown in this table.

For the parallel hypothesis, the simultaneoustest is rejected (p <.0001). The parallel item
hypothesisis not supported.

PROC CALIS also providesindividual tests for the component hypotheses. This would be
useful for doing an ad-hoc analysisto probe what fails the simultaneous hypothesis. For
example, both hl and h2 are atleast marginallysignificant. But h3 and h4 are not
significant. Recall that h1 and h2 are about the equality of the loadings (path coefficients)
while h3 and h4 are aboutthe equality of error variances. The current results show that the
items might have the same error variances but not the same loadingsin the population.
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Model Modifications
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i When the Model Does Not Fit Well ...

Fit Summary
Chi-Square 196.74565
Chi-Square DF 50
Er > Chi-Square <.0001
Standardized BEMR (SEMR) 0.0936
Rdjusted GFI (AGFI) 0.7341
EMSEA Estimate 0.1431
Bent ler Comparative Fit Index 0.8087

= Large SRMR and RMSEA
= Small AGFI and CFI

= Model modification: suggests ways to improve the model
fit

= Lagrange multiplier (LM) tests: which parameters you can
add to significantly decrease the model fit chi-square value

The mental ability model did not fit well. The SRMR and the RMSEA are large, while the
AGFl and the CFl are small. When you encounter a bad model fit, it would jeopardize your
interpretations of the model parameters, effect analysis, hypothesistesting, and etc.

Model modification s a statistical technique that suggests ways to improve your model fit.
The most common model modificationtechniqueis done through the so-called Lagrange
multiplier (LM) tests. Essentially, the LM tests suggest which parameters you could add to
the model to significantly lower the model fit chi-square value. When the model fit chi-
square is lowered, most other fit indices (but not all, especially those parsimoniousindices
that take model complexity into account) might also improve.
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- Using the MODIFICATION Option

proc calis data=mental nobs=115 modification; |
path -

pakichy

.I
Socialstatus ===> ParentalEncouragement FamilvSize
AchievementMotivation,

FamilySize ===> AchievementMotivation,

ParentalEncouragement ===> HAchievementMotivation Mentalability,

AchievementHotivation ===> Mentalability,

Socialstatus =mm} 51 52 53 = 1. ,
ParentalEncouragement ===> Fl P2 F3 = 1.,
AchievementHotivation ===> Al AZ A3 = 1.,
Mentalability ===> M1l M2 M3 =1.;

The option you can use to do model modificationin PROC CALIS is the MODIFICATION
optionin the PROC CALIS statement. You can simply add this option to the PROC CALIS
statement when you run your model. This example shows that the LM tests for model
modification is requested for the original mental ability model, which does not havea very

good model fit.
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LM Tests for Paths

Rank Order of the 10 Largest IM Stat for Path Relations

Parm
To From IM Stat Pr > Chisq Change
B2 Pl 56.19414 <. 0001 0. 73635
P1l P2 56.19349 <. 0001 -0.72%04
A2 M2 19.17647 <. 0001 0. 22842
RZ Parent alEncouragement 16.57947 <. 0001 -2.31463
B2 MentalAbility 17.20340 <. 00071 0. 95581
ParentalEncouragement Al 17.04464 <. 00071 0. 27042
Al Parent alEncouragement 15.86099 <. 0001 1.88%204
FamilySize A2 14.43548 0.0001 -1.145%0
Rl MentalAbility 13. 868705 0. 0002 -0.75314
RZ P3 1296016 0.0003 -0. 57151

Adding the P2 <==z P1 (or P1<=== P2) path reduces your model fit chi-square by 66 approximately.
Adding the A2 «=== M2 path reduces your model fit chi-square by 19 approximately.

.. T

PROC CALIS output several tables for the LM tests. The results are shown in different tables,
according the type of the parameters. This table shows the ranking of LM statistics for
addingthe (single-headed) pathsinto the mental ability model. It gives you the ten paths
that can improve the model fit chi-square statistic the most.

The top oneis the p1 ===> p2 path.The LM statistic 56.19 means that if you includethis
path into the model, you can expect to reduce the model fit chi-square by about 56. This is
a substantialimprovement because you can get this big improvementby just losingone
degree of freedom. The second one is the p2 ===> p1 path. Essentially, this will give the
same amount of model improvementas the first path. The third one is not that dramatic,
but still give you a substantial improvement. Addingthe M2 ===> A2 path reduces the
model fit chi-square by 19.

Do you want to add these pathsinto your model? Let us discuss this after we examine
more results about the LM tests.
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. LM Tests for Error Variances and Covariances

Rank Order of the 10 Largest IM Stat for Error Variances and Covariances
Error Error Parm
of of 1M stat Pr > ChiBg Change
B2 Pl h6.19312 <. 0001 -1.96473
ParentalEncouragement Al 12. 26622 00005 o, 46050
ParentalEncouragement AZ 12.08031 0.0005 -0, 48351
FamilySize Az 11.22650 0.0008 -1.88205
M2 nz 10.26408 0.0014 1.55895
52 81 7.78117 0.0053 1.55314
Mentalfbility A2 7. 48800 0.0062 0. 78161
AchievementMotivation Al 6.95709 0.0083 -0. 52904
B2 a3 6.54315 0.0105 0.76007
A3 nz 6.21429 0.0127 -0.67173

Adding the error covariance (P2 <===>P1) reduces your model fit chi-square by .
56 approximately.

9sas | K.

This table shows the LM tests (statistics) for the error variances and covariances. On the
top of the list is the covariance between the errors of P2 and P1. Adding the covariance
between the errors of these two variables reduces the model fit chi-square statistic by 56.
This is actually the same improvement that we have seen for addingeither the P2 ===>P1
or

P1 ===> P2 path. The next onein the list has a much less improvement. The LM statisticis
only 12.26.

For this particularly model, these two tables are all that PROC CALIS produces for the LM
statistics. The question now is which parameter or parameters you want to add to the
model. This could not be answered by just looking at the LM statistics. But it might also
involve some judgment about how reasonablethe added parameters are. Do these added
parameters render your model un-interpretable, or even contradictoryto your theoretical
claims, despite the fact that they improve your model fit substantially?
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|| Notes on the LM Statistics

i
|

= Chi-square reductions are linear approximations

= Chi-square reductions are not additive

= Modifications suggested might not be substantively
meaningful

Before giving an answer to the current model modification analysis, some important
general points about the LM statistics are discussed.

First, the model fit chi-square reductions as indicated by the LM test statistics are only
linear approximations. This means that if you actuallyrefit the model by addingthe
suggested parameter, the actual chi-square reduction might be more or less.

Second, the chi-square reductions as suggested by the LM test statistics are not additive.
That means that you cannot add two or more parametersinto the model and expect the
actual reductionin the new modelis exactly the sum of the corresponding LM statistics.

Usually, the actual reduction would be smaller (althoughiit could be larger).

Last but not least, modification suggested by the LM statistics might not be substantively
meaningful.

All these three pointsare importantin decidingwhich parameter you want to add to the
current mental ability model for improvingthe model fit.
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' Adding Error Covariance between P1 and P2

7\
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Considering the top suggestions from the results of the LM test statistics, | would add the
covariance between P1 and P2. The added parameteris shown in the path diagram.

Basically, all the top LM suggestions --- the P2 ===> P1 and P1 ===> P2 paths, and the error
covariance between P1 and P2 are just different manifestations of the same lack of fit
about a covariance elementin the original model. Thatis, the covariance between P1 and
P2 was not well-explained by the original model. Adding either of these will lead to a better
fitting of the covariance between P1 and P2. In addition, addingeither of these will give
you an approximate model fit chi-square improvement of 56. But, you would not get three
times of this amount by addingall these three. In fact, if you were to add all these three
parameters, it is very likely that your model is not identified, meaning that you would not
get unique estimates.

Among the top three choices, the error covarianceis chosen because the interpretation of
added error covarianceis a little “cleaner” P1 and P2 are measurement indicatorsof the
same factor (Parental Encouragement). The error covarianceinterpretation isthat these
two indicatorshave some sort of correlation thatis unexplained by their common factor.
The added error covariance represents the covariance explained by some unknown
sources. However, if | were to add either the P1 ===> P2 or P2 ===> P1 paths, it would
create some conflicts with purported common factor structure for the two indicator
variables.

Note that the current conclusion is based on a very general argument thataims at

preserving the original factor-variable structure. It is not a universal principle. In practice,
you have to also consider the substantive grounds of the added parameters.
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- Adding Covariance between the Errors of P1 and P2

proc calis data=mental nobs=115 Emodification:
path
SecialStatus ===> ParentalEncouragement FamilySizas
AchievementMotivation,

Familysize ===> AchievementMotivation,
ParentalEncouragement ===> AchievementMotivation Mentalability,
AchievementMotivation ===> MentalAbility,
SocialStatus ===> %1 82 =3 = 1.
ParentalEncouragement ===> Fl F2 F3 = 1.,
AchievementMotivation ===> Al A2 A3 = 1.,
Mentalability ===3 M1 M2 M3 =1.;

[peov B1 B2; |

Now that| have decided to add the covariance between P1 and P2, | refit the model by
addingthe PCOV statement specification for the two variables, as shown in the SAS code in
this slide. | also use the MODIFICATION option one more time to see if there could be any
further suggested improvements.
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Before and After Adding the Error Covariance

| Before ... | After...
Fit Summary Fit Summary
Chi-Square 196.7455 Cchi-Square 110, 6388
Chi-Sgquare DF 59 Chi-Square DF 11}
Pr » Chi-Sguare <L 001 Pr > Chi-Squarec <. 0001
Standardized RHME (SEMIL) 0.,0936 Standardized RHR {SRMR) 0. 0661
adjusted GFI (AGFI) 0.7341 Adjusted GFI (RAGFI) 0. 8067
BMSER Estimate 0.1431 RMSEA Estimate 0., 0092
Bentler Comparative Fit Index 0. 8087 Bentler Comparative Fit Index 0. 5269
Improve the model fit chi-square a
lot more than B6.

Before you add the error covariance between P1 and P2, your model fit chi-square was
about 197. After addingthe covariance, the model fit chi-square is about 111. This
improvementis actuallylarger than what the LM statistic suggested, which was 56.

Other fit indices also improve. The SRMR and the RMSEA are now close to be acceptable.
The AGFIl and the CFl are boosted to higher levels.

143



- A New Set of LM Tests for Paths

Rank Order of the 10 Largest IM Stat for Path Relations

Parm
To From I stat Pr > Chisqg Change
AZ M2 23.93741 <. 0001 0. 23830
A2 Parent alEncouragement 22.22260 <, 0001 -2.303%8
A2 MentalAbility 21.70998 <. 0001 0. 90790
Rl Parent alEncouragement 19.342681 <. 0001 1.96513
Al MentalAbi Lity 1810545 <. 00071 -0, F5TLhE
ParentalEncouragement Al 11.30632 <. 00071 0.32504
Al M2 15.06992 0.0001 -0. 17617
A2 FamilySize 15. 06766 0.0001 -0.17675
Family8ize AZ 14.29265 0. 0002 -0, 89658
AchisvementMotivation Al 11.75569 0. 0006 -0.35962

Adding the A2 <=== M2 path now reduces your model fit chi-
square by 24 (was 19 before adding the error covariance).

The new set of LM tests for paths suggests the addition ofthe M2 ===> A2 path. The LM
statisticis about 24. If you compare this result with the first LM results regarding the same
path, you notice that the LM statistics changes as the fitted model changes. Previously, the
same path had an LM statistic of 19. Thisillustrates the nonlinearity and non-additivity of
the LM statistics.
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- A New Set of LM Tests for Error Variances
and Covariances

Rank Order of the 10 Largest IM Stat for Error Variances and Covariances
Error Exrror Darm
of of IM Stat Pr > Chisg Change
ParentalEncouragement AZ 1411917 0. o002 0, h3966
ParentalEncouragement Al 14.00823 0. 0002 0, 51242
Familysizo a2 13. 96827 0.0002 -1.98162
M2 Az 11. 66015 0.0006 1.65462
AchievementMotivation Al 11.75570 0. 0006 -0, 57402
Ment alAbility AZ 10.30441 0.0013 0. 86542
Pl Al 9.02987 0.0027 0. 53357
852 51 B.94243 0.0028 1.66876
MentalAbility FamilySize B.05365 0.0045 2.49300
Ment alAbility AchievementMotivation 6.94045 0.0084 0.98947

0sas .

There is also a new set of LM tests for addingerror covariances.

You might want to improve your model further by adding some parameters from these two
LM tables, although | will not attempt to do more here.
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i Customized LM Tests

= Principled modification process

= Restrict the set of parameters of interest for
the LM tests

eoeww SSaS %‘

268 &

Model modification by using the MODIFICATION option is kind of “blind-search” procedure
that you try to improve your model without any definite directions. As discussed before,
the LM test statistics might not give you suggestions that are substantively meaningful.

However, in some occasions you might want to restrict your attention to certain set of
potential paths or parametersin your model, rather than all possible parameter space
searched by the MODIFICATION option.

If you want to do such a principled modification process, you can use the customized LM
tests supported in PROC CALIS.
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| Customized LM Tests by Using the LMTESTS
Statement

proc calis data=mental nobs=115;

path
SocialStatus ===> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize ===> AchievementMotivation,
ParentalEncouragement ===> AchievementMotivation Mentalability,
AchievementMotivation ===> Mentalability,
SocialStatus ===> 81 8§82 83 =1, ,
ParentalEncouragement ===> Pl P2 P3 =1.,
AchievementMotivation ===> Al AZ A3 =1.,
Mentalability ===> M1 M2 M3 =1.;

lmtests corr err=[coverr] path=[Lv->LV LV->MV];

run;

({ eblore the oo of Lintecte called || Explore the set of Lidtests called “path.” which

“eorr_err.” which contains all the | | contains all potential latent variable paths (LV->LV)

Em;i;lnﬁgog::::;mu el s | and measurement paths (LV -3 AAV) to be freed.

The customized LM tests define sets of parameters of interest so that your model

modification process (or LM statistics output) would be limited to those sets of parameters.

PROC CALIS provides the LMTESTS statement syntax to achieve the customized LM tests.

The mental ability model is used again. This time | define two sets of parameters of
interest. The first set of LM tests is called “corr_err” (it is just a name you assign). This set
of parameterscontains the parameter region COVERR, which is a keyword that denotes all
error covariancesin the model. The second set of LM tests is called “path”—aname you
assign. This set of parameters do not exhaust all pathsin the model. It containsthe
parameter regions LV->LV and LV->MV, which are keywords that denotes the latentvariable
(LV) to latentvariable (LV) paths and the latentvariable (LV) to manifest variable (MV)
paths, respectively. Therefore, this customized set “path” excludes paths from observed
variablesto observed variables, or from observed variablesto latentvariablesso that the
factor structures of the model could not be potentially destroyed by addingthese paths.
The LM tests for these paths are simply not included in the results for the “path” set.
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- Customized LM Tests for Error Covariances

Type

COVERR
COVERE
COVEEER
COVERR
COVERE
COVERR
COVERE
COVEER
COVERE

COVERR

Rank Order of the 10 Largest IM Stat for Set corr err

Varl

-3
ParentalEncouragement
ParentalEncouragemsnt
FamilySize

M2

852

HMentalAbility
Achievementhot ivation
=34

R3

Var?

Pl
Al
pvid
A2
a2
81
az
Al

A2

IM Stat

56.
12.
1z.
1.
10.

oo @ o

19312
26622
06031
22650
26408

e
L AB800
. 95709
. 543156
.21429

Pr > Chisq

Parm

Change

~1.96473
0.46050
-0.48351
-1.88205
1.55895
1.55314
0.78161
-0.52904
0. 76007
-0.67173

This table shows the customized LM tests of the “CORR_ERR” set. Essentially, this tableis
the same as one of the standard tables produced with the MODIFICATION option because
both tables have the same parameter region “COVERR.

GSas B
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- Customized LM Tests for Paths

kank Order of the 10 Largest IM Stat for Set path

Paxrm
Typs Varl Vaxr2 IM Stat Pr > Chisg Change
DV DV a2 Parental Encouragement 18.57947 <, 0001 2.31462
DV_DV R2 HMentalhbility 17. 20340 <. 0001 0.95581
ov_Dv a1l Parent al Encouragemant 15. 86059 <, 0001 1.88%904
DV DV Al MentalBhility 13. 88705 0. 0002 ~0.75314
DV DV 52 HMentaldbility 8.97262 O, 0027 - 0. 38910
DV_DV 53 AchievementMotivation 6.27102 0.0123 0.32436
oV v 52 BrhievementMotivation 6.19233 0, 0128 -0.40928
DV_DV Parental Encouragement HentalRbility 5.57439 o, B2 0.29376
DV_DV ParentalEncouragement AchlevementMotivation 5.33788 0, 0200 0.30218
ov_ov FamilySize Achievementiotivation 5.33730 0. 0209 -1.20671

The measurement path A2 <=== ParentalEncouragement reduces the
model fit chi-square by 19.

The second customized set of LM tests suggests that addingthe dependentvariable (DV) to
dependentvariable (DV) path A2 <=== ParentalEncouragementimproves the model fit the
most amongst all pathsin the “path” set. The chi-square improvementis about 19, which is
statistically significant.
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- Adding a Path from Parental Achievement to A2

Achievement Vel
Motivation

Addingthe first path suggested by the second set of customized set is represented by the
path diagram shown above. The path in red shows that A2, whichis an indicator of
Achievement Motivation, is now also an indicator of Parental Encouragement. Although the
factor-variable functional relationship is preserved in this suggested path diagram, A2
becomes factorially-complex. The also implies that A2 might not have been a good (unique)

measure of achievement motivation.

‘81‘82‘83‘ ‘P1 PQHPS M1‘M2‘M3‘
. e o o b -
i | 7 B | o T | @7
. = - SNLA e 2 Sl =
Social Status Fatea = Mental Ability
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- Adding the ParentalEncouragement ===> A2 path

Tun;’

proc calis data=mental nobs=115;

path
Socialstatus ===> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize  ===> AchievementMotiwvation,
ParentalEncouragemesnt ===> AchiesvementMotivation Mentalability,
AchievementMotivation ===> MentalAbility,
Socialstatus =>s1828 =1.,
ParentalEncouragement ===> P1 P2 P3 12 =1.,
AchievementMotivation ===> Al AZ A3 o =1.,
MentalAbility ===> M1 M2 M3 =1.;

Nonetheless, you add this new path for A2, as shown in the above PROC CALIS code. All

% GSas B

'Y 1

you need to dois to add A2 as one of the observed indicatorsof the

ParentalEncouragementfactor.
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- Before and After Adding the
ParentalEncouragement ===> A2 Path

Before ... After...
Fit Summary Fit Summary

Chi -Syuare 196, 1455 Chi-Sguare 168.2618
Chi-Square DF 59 Chi-Sguare DF 58
Pr > Chi-Square =.0001 Pr > Chi-Syuare <. 0001
Standaxdized BMR {SRMR) 0.0936 Standardized MR (SBHR) 0.089%
Adjusted GFI (AGFI) 0.7341 Adjusted OFI (AGFI) 0. 7675
RHSEA Bstimate 0.1431 FMSEA Estimate 0.1291
Bentlex Comparatirve Fit Index 0. 8067 Bentler Comparative Fit Imdex 0. 8468

The model fit improves quite abit.

These two tables compare the fit indices before and after addingthe
ParentalEncouragement===> A2 path.The model fit chi-square actually drops more than
19, which was suggested by the LM statisticin the preceding results. All other fit indices
improve quite a bit too.

Finally,a caution about all model modification: you should validate your newly-established
model by new data. The reason is that the model modification process is subject to the
capitalization on chance. Using a principled modification process by the customized LM
tests might not avoid the chance problem completely. Confirmation from new datais
always recommended.
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Full Information Maximum Likelihood
(FIML) Method (SAS/STAT 9.3)

. 6sas B

The full information maximum likelihood method in PROC CALIS is a likelihood-based
method for estimating model parameters with the presence of missing values. Many SAS
statistical procedures, including the CALIS procedure, delete all incomplete observations
(observations with at least one missing values) from analysis by default. Therefore, even if
the missing valuesare due to “ignorable” reasons, default estimation methods lose
valuableinformation from the incomplete observations. By using the full information
maximum likelihood method, all available valuesin the incomplete and complete
observations are used in the estimation.

The full information maximum likelihood method is availablein SAS/STAT 9.3 and later.
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I Why FIML?

= Utilize incomplete observations in the analysis

» Valid under the missing at random (MAR) condition
* METHOD=FIML in the PROC CALIS statement

FIML ensures the maximum use of the data values. However, it assumes the missing at
random condition (the MAR condition, following Rubin’s definition). Simply put, the FIML
estimation assumes that the missingness is not dependent on the missing values, although
the missingness could be related to other variables. This assumption cannot be tested,
however.

In order to use the FIML estimation, you can specify the METHOD=FIML optionin the PROC
CALIS statement, instead of the default ML method.
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_ Factors Affecting Mental Abilities

‘81H52H83‘ ‘FH‘PQHPS‘ ‘A1HA2HA3

Parental Achievement
Encouragement Motivation

=
-
=
ha
=
[#)

Mental Ability

_____.—”/

i [] Observed variable
. () Latent variable

** This example is inspired by an example in Marjoribanks (1974). In this example, the model is purely
hypothetical and the data are simulated. Except for the similarity in the names of the hypothetical
constructs, no part of the current analysis represents the original research.

0 Gsas B

This is a model that assumes a sequential order of causal effects of Social Status on Mental
Ability. The effect of Social Status on Mantel Abilityis mediated by Parental
Encouragementand Achievement Motivation. These variablesare all formulated as latent
variablesin the model. Each of them has some measured indicators(S1-S3, P1-P3, and so
on).

Indeed, Marjoribanks (1974) uses these variablesin a research. In this presentation, | use
these constructs only for demonstration purposes. Except for the similarity in the names of

the hypothetical constructs, no part of the current analysisrepresents the original research.

Both the model and the data are made up for the demonstration.
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- Data “miss3”

= Twelve observed variables

= S1, S2, S3: Observed indicators of social status

= P1, P2, P3: Observed indicators of parental
encouragement

= A1, A2, A3: Observed indicators of achievement
motivation

= M1, M2, M3: Observed indicators of mental ability
= 200 observations are generated.

= 100 incomplete observations with at least one missing
value (but not all missing values).

GSas B

As mentioned, there are twelve variablesas reflective indicators of the latent constructs in
the model.

| simulated a data set of 200 observations. One hundred of these observations contain at
least one missing values. The dataset is called “missed3.”
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PROC CALIS Code for the Path Diagram

‘31“52 ‘33‘ ‘P1|_P2 ‘pa‘ |A1HA2:‘A3‘ ‘M1HM2||M3‘

1

Achievement
Motivation

Mental Ability

Parental
ncourageme

proc calis data=miss3 method=fiml;
path

s1-53 === Socialstatus =1,
F1l-P3 L=== ParentalEncouragement = 1,
Al-23 <=== AchievementMotivation = 1,
M1-M3 <=== MentalAbility = .,
SocialStatus ===>» ParentalEncouragement,
ParentalEncouragement ===> AchievementMotiwvation,
AchievementMotivation ===> MentalaAbility:;

run;

 §sas B
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The PROC CALIS code for this model is very simple.

In the PROC CALIS statement, the DATA= option specifies the dataset and the METHOD=

option specifies the FIML method for estimation.

In the PATH statement, the first four entries specify the reflective indicators (observed
variables) for the four latent constructs. | set a fixed loadingof 1 to the first indicator of
each latent construct. All other loadingsare free parameters. In the next three entries, |
specify the functional relationsamong the latent constructs, reflecting exactly what s

hypothesized in the path diagram.
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- Modeling Information

Modeling Information

Data Set WORK.MISS3
H Records Read 200
H Complete Records 100

H Incomplete Records 100

H Complete Obs 100
H Incomplete Obs 100
Hodel Type PATH
Analysis HMeans and Covariances

This slide summarizes the modelinginformation. It shows that 200 data records were read-
--100 of them are complete records and 100 of them are incomplete records. Because no
frequency variableis used, these numbers are also for the numbers of complete
observations and incomplete observations, respectively.

With the FIML method, the means of the variablesare also modeled. Because no mean
structures are specified in the model, saturated mean structures are assumed.
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Data Coverage

Proportions of Data Present for Means {Diagonal} and Covariances (O0ff-Diagonal)
51 52 53 M1 n2 M3 Al A2 A3 ri r 3

51 0.9250

82 0.8300 0.9250

53 0. 0800 0. as00 0.%100

M1 0. 8750 0.8800 0.8800 0. 8900

M2 0.8930 0.895%0 0.8800 0.8750 0.91350

M3 0.5000 0.8950 0.8850 0.8350 O.g900 o.9200

Al 0.8900 n.aa5s0 0.a8850 0.8a00 0.8900 0.8850 0.9200

A2 0.A950 0.8600 0.4750 0,750 0.8A50 0.8650 0.8850  0,9000 Problematic coverages

A3  0.6900 0.0900 0.8000 0.0000 0.6000 0.6000 0.0850 0.8600 0.9100
Pl 0.5150 0.5100 0.5000 0.5050 0.5100 0.5100 0.5150 0.5100 0.5150 0.5350 |

P2 o0.8%00 0.9100 0.8900 0.8800 0.9030 0.8850 0.%000 o.8900 0.8930 0.35150 0.9350

P3 0. B850 0.8850 o.8900 0. 8300 0.&800 o.&900 o.8900 0. B350 O.89350 o.5100 0. B900 0.9200

Average Proportion Coverage of Weans 0.883750

Average Proportion Coverage of Covarianceos 0.824015

When the FIML method is requested, PROC CALIS also displayssome information aboutthe
missing patternsin the data.

This table shows the proportion of data coveragesin the covariance matrix. For example,
for computing the covariance element (51,51), you only need the values of S1. This table
shows that 92.5% of the S1 values are available or non-missing. So, you havea high
proportion of data coverage for computing this covariance element. Certainly, this number
is also the proportion of data coverage for computing the mean of S1.

For off-diagonal elements, this table shows the proportions of joint coverage of variable-
pairs. For example, to compute the covariance element (S1,52), you need both the values
of S1and S2. The tableshows that 89% of the observations have both non-missing S1 and
S2 values. So, the proportion coverage for computingthis covariance is still high.

Using this table, you might be able to spot the problematiccoverages. For example, the
proportion coveragesrelated to P1 are all about 50%, which is much lower than other
coverage values. This might tell you that something is wrong about the P1 variable.

All covariances have high proportions of data coverages, except for those with the P1
variables.
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- Rank Order of Mean Coverages

Pl
M1
A2
53
A3

M2

Variable

o o o o o o

Rank Order of the 6 Smallest Variable (Mean) Coverages

Coverage

. 5350
. 8900
. 9000
. 9100
. 9100
. 9150

When you have a large covariance matrix, it might be more difficultto locate the
problematicdata coverages. To help you make a more efficient examination ofthe data
coverages, PROC CALIS ranks the coverages and shows the smallest data coverages. This
table shows the smallest coverage in the variables (that is, the smallest coverages among
the diagonal elementsin the covariance matrix). Clearly, variable P1 has the most serious

problem in terms of data coverage.

GSas B,
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- Rank Order of Covariance Coverages
Rank Order of the 10 Smallest Covariance Coverages
Varl Var2 Coverage
Pl 53 0.5000
Pl M1 0.5050
Pl 52 0.5100
Pl M2 0.5100
Pl M3 0.5100
Pl A2 0.5100
P3 Pl 0.5100
Pl 51 0.5150
Pl Al 0.5150
Pl A3 0.5150

e .
- Gsas | B

This table shows the ten lowest proportions of joint coverages of variable-pairs. The results
here clearly point to the problematicnature of P1. All these lowest proportion coverages
are related to variable P1.

So, what might have happenedto P1 during the data collection process? This is something
that practical researchers would like to find out. To complete my illustration, let me just
make up the P1 variablefor a possible explanation.
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Why Does P1 Have a Lot of Missing Values?

= P1: "My parents set consistent goals for me to achieve.”

= The data coverage and the missing pattern analyses are
useful for locating problematic items (variables).

Suppose that the P1 item is “My parents set consistent goals for me to achieve.” This item
is appropriate to respondents who live with their parents. But what aboutthe respondents
who might have been living with single parents? Should they answer “Strongly Agree” to
this question only because the goals must be consistent with a single parent? Or should
they just choose not to respond to the question? Either way, the low data coverage of the
P1 variable exposes the problematic nature of this item. The researchers might need to
replace this item by a better one to avoid missing values.
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- Dominant Missing Patterns

Rank Order of the 5 Most Frequent Missing Patterns
Total Humber of Distinct Patterns with Missing values = 26

NVar
Pattern Hiss Freq Froportion Cumulative
1 pisialsiadne s dhs 1 75 0.3750 0.3750
2 XXX, XX 7 1 0.0050 0.3800
3 B9 - - 8 7 1 0.0050 0.3850
4 K.¥X. ... 9 1 0.0050 0.3900
5 XK K X 8 1 0.0050 0.3950

NOTE: Hommissing Pattern Proportion = 0.5000 (H=100)

Another useful output from PROC CALIS is the display of the most dominant missing
patterns. For the current example, it is evident that one missing pattern is dominating.
Pattern #1 has one missing variable (represented by a dot) and all other variablesdo not
have missing values. This pattern has a distinctively high frequency of occurrence: 75. It
accounts for about38% of the observations. In the note, it shows that the proportion of
nonmissing pattern (with complete data) is 50%.

So, what is the missing variablein this pattern? | think you can guess now that it is P1.
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- Mean Profiles of the Dominant Missing

Patterns
Means of the Nommissing and the Most Frequent Missing Patterns
---------------------- Missing Pattern--------—----—--—---—-
Honmissing 1 2 3 4 5
variable (N=100) (N=75) (H=1) (N=1) (H=1) (N=1)
=1 4.04000 3.58667 4.00000 .
52 3.91000 3.65333 . 3.00000 .
83 4.00000 3.52000 . . . 7.00000
Ml 4.02000 3.56000 . 1.00000 2.00000 6.00000
k2 4,04000 3.56000 6.00000 . ' .
M3 4.01000 3.42667 3.00000 . 4.00000 6.00000
Al 4.,18000 3.66667 . . 4.,00000
AZ 4,29000 3.508667 . .
A3 4.30000 3.46667 4.00000 2.00000
Fl 4,08000 . 3.00000
P2 4.15000 3.73333 . 3.00000 . .
B3 4.,06000 3.70667 6.00000 . . 6.00000

LI X L §Sas %

This output supplementsthe previousone with the display of the means of the nonmissing
variablesin the dominant missing patterns and in the nonmissing pattern. You can also use
this table to locate the missing variablesin the missing patterns.

A dotin this table represents the corresponding missing variablein the patterns. For
example, in missing pattern#1 (the most dominant missing pattern), P1 is the missing
variable. Comparingthe means of this missing pattern with the nonmissing patterns shows
that all the means in this pattern are lower. Is this just a coincidence? Or, is this missing
patternrepresent a meaningful sub-populationthat has a lower mean profile? | do not
know the answer here. But empirical researchers might be interested in following up this
kind of questionsafter examiningthe mean profiles of the missing patterns.
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- Model Fit Summary of FIML

Chi-Square

Chi-Square DF

Pr > Chi-Square
Standardized RMR (SRMR)
RMSEA Estimate

Bentler Comparative Fit Index

58.

o O O O

6765
51

.2147
.0403
.0274
. 9958

The FIML method also displays model fit summary. In this example, the model seems to be
very good. Model fit chi-square in not significant. SRMR and RMSEA are both less than

0.05. Bentler’s CFl is well above .90.

GSas B,
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BB Path Effect Estimates
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All the path coefficients or effects are statistically significant. This is a good sign for the

| All effectestimates are statistically significant. |

model---you did not put useless paths in the model.

@4

o ¢
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- Regular ML Estimation — Complete Case

-
Analysis
proc calis data=miss3 /% method=fiml */;
path
81-53 === SocialsStatus =1,
P1-P3 <=== ParentalEncouragement = 1,
Al-A3 e AchievementMotivation = 1,
M1-M3 <=== Mentalability =1,
SocialStatus ===> ParentalEncouragement,
ParentalEncouragement =—=> AchievementMotivation,
AchievementMotivation ===> MentalAbility;
run;

| Only the 100 complete observations are used in the default ML estimation. |

% GSas B

'Y 1

What if you do not use the FIML method for estimation? Will it give you the same
estimation results?

To use the default ML method, let’s just comment out the METHOD=FIML option.
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- Comparing ML and FIML Fit

Regular ML FIML
Chi-Square 70.0624 58.6765
Chi-Square DF 51 51
Pr > Chi-Square 0.0394 0.2147
Standardized RMR (SRMR]) 0.0647 0.0403
RMSEA Estimate 0.0614 0.0274
Bentler Comparative Fit Index 0.9831 0,9958

The complete-case analysis by regular ML estimation does not support
a good model fit according to the chi-square test, SRMR, and RMSEA.

With the regular ML method, the chi-square statistic is 70.0624 (df=51, p =.0394), which is
significant. Both the SRMR and RMSEA are larger than .05. These indicate bad model fit,
even though Bentler’s CFl is still showing a good model fit. For this particularexample, it
appearsthatthe ML method fails to obtain better evidence for a good model fit from the
incomplete observations. The FIML estimation does show a much favorable picture of

model fit.

Certainly, this example does not mean that you will always get better model fit with the
FIML method, as compared with the ML method. The most importantidea is thatif you
have a large proportion of incomplete observations, it might be betterto use the FIML
estimation so that your statistical decisions can be based on as much information as

available.

GSas B,
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Case-Level Residual Diagnostics
(SAS/STAT 12.1)

oy GSas B,

ec

Case-level residual diagnosticsis an old topicin regression analysis, but it is relatively new
in structural equation modeling.

Some populartopics of case-level residual diagnosticsinclude the detections of outliers
and leverage points, studyingthe linearity of the case-level residuals, and so on.

The case-level residual diagnostic capability will be availablein PROC CALIS in SAS/STAT
12.1, scheduled to be released in Summer/Fall 2012I.
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[0 Case-Level Residual Diagnostics in
Structural Equation Modeling

= Traditionally, residuals in SEM are those for covariances
and means

= Difficulties of case-level residual diagnostics in SEM

1. Multivariate responses
2. Latentvariable values not observed

= Yuan and Hayashi (2010)

1. Residuals of multivariate responses --- Mahalanobis distance
(M-distance) of multivariate residuals

2. Estimation of latent factors --- generalization of Bartlett's
formula for factor scores to structural equation modeling

Traditionally, residualsin structural equation modelingrefers to those of the covarianceand
mean elements. Residual analysishas not been well explored at the observation level in
SEM. The difficulties of case-level or observation-level residual analysisin SEM are due to
the involvements of multivariate responses and the latentvariables.

In regression analysis, there is only one response variablein a regression equation. This
makes it easy to define outliers by the magnitudes of the residuals. However, in SEM you
usually have multivariate responses. The way to define outliers has to be done with an
overall measure of residuals.

In regression analysis, both response and predictor variablesare observed. There would be
no difficultyin definingleverages and residuals using the observed and predicted values of

the variables. However, in SEM latentvariables are not observed and must be estimated. To
compute leverages and residuals, you must also estimate the factor scores first.

These two issues have been dealt with in Yuan and Hayashi (2010) paper. Basically,
multivariate residuals are reduced to a single measure called residual M-distance for each
observation and the estimation of factor scores by Bartlett’s formula has been generalized
to structural equation modeling.
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| A One-Factor Model for Mardia Data (N=88)

_~» mechanics <« el |

L e =
L 7w vector (€2 )
Factor | ' algebra <« e3 |
T+ analysis ~— e4 )
™ statistics <~ e5 )

Let us use an example to demonstrate this newer residual diagnostictechniquein
structural equation modeling.

In the path diagram, a one-factor confirmatory factor model is fitted to the dataset in
Mardia’sbook. The measured variablesare test scores in five subjects: mechanics, vector,
algebra, analysis, and statistics. There are 88 observationsin the data set.

The current path diagram shows the error variablesexplicitly. The primary purpose is to
illustrate the role of these error variablesin the model. These error variablesare the parts
of the measured variablesthat are not predicted by the common factor. You can treat these
error variablesas latent variables---thatis, they are not observed. After the factor scores
are estimated for the individuals, the residuals are computed as the differences between
the observed values and predicted values of the variables, much like the way thatis done in
regression analysis.
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- Residual Analysis

data mardia;

input mechanics vector algebra analysis statistics:

datalines;
T7.000 B2. 000 67. 000 67,000 B1.000
63.000 78. 000 80, 000 T0.000 B1.000
Th.000 73.000 T1.000 66, 000 81.000
[ More Data }

ods graphics on;

proc calis data=-mardia vesidual plots=all;
path Factor —=> mechanics wectors algebra analysis statistios:
pvar Factor = 1;

Tun;

ods graphics off;

To do case-level residual analysis, you can use the RESIDUAL optionin the PROC CALIS
statement. The PLOTS=ALL option plots all available graphicsin PROC CALIS. This will
include several plots for case-level residual analysis.

The PATH statement specifies the relationshipsbetween the latentvariableand the
observed variables.

The PVAR statement fixes the variance of the factorto 1 for the identification of factor
scale.

The ODS GRAPHICS statement is used to request quality graphics.
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- Covariance Residuals in SEM Output

Raw Residual Matrix
mechanics vaectors algebra analysis statistics
mechanics —0. 00001 35.32758 -0.50719 -13.81981 -13.368132
vectors 3532758 -0.00000 ~0.35983 -5.927%58 -10. 54651
algebra -0.5071% -0.35983 0.00000 0.35575 0.16143
analysis -13.81%81 -5.92758 0.35575 0.00000 12.35947
statistics -13.38132 -10. 54651 0.16143 12.35947 0.00000
Average Absolute Residual 6, 183100
Average Off-diagonal Abscolute Residual 9.274649

These are “traditional” variance and covariance residuals in
structural equation modeling.

— GSas B,
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First, let us look at some more traditional residual analysisin SEM output. This slide shows
the residuals of the covariances. The confirmatory factor model fits the diagonal elements
of the covariance matrix perfectly, while some covariance residuals are large compared to
others. For example, the residual for the covariance between mechanics and vectors is 35.
This reflects the difference between the fitted covariance and the observed covariance.

These residuals are not about individual observations. Case-level residual diagnostics use
residuals computed for each individual in the raw data.
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[ Case-Level Diagnostics

» Which observations are outliers?

U Observations that have large residuals in response variables
mechanics, vector, algebra, analysis, and statistics --- large M-
distances in residuals e, e2, €3, ed, and es.

U If individual residual e; = {ey;, €2, €3, €4, €5;} and Cov(e) are
known, residual M-distanceis:

dy; = \Je;Cov1(e)e/
* Which observations are leverage points?

] Observations that have large Factor scores --- large M-
distances in factor scores.

U If individual factor score f; and var(f) are known, leverage M-
distanceis:

dsi = Fvar (D}

‘ Inpractice, d,; and d;; are estimated fromthe data given the model estimates. ‘

Two most popularquestionsin case-level residual diagnostics are: Which observationsare
outliers? Which observationsare and leverage points?

To detect the presence outliers, a measure called residual M-distance is used. Applyingto
the current example, residual e; in the five dependentobserved variablesis computed for
each individual. Then, the Mahalanobisdistance d,.; is computed for each multivariate
residual by using the formula in the slide. In practice, residuals and their covariance matrix
are estimated from the sample. Outliers would be those observations that have
exceedingly large residual M-distances.

To identify leverage points, a measure called leverage M-distance is used. Applyingto the
current example, the predictorvariable f; and its variance var(f) are used in the formula
for computing leverage M-distance dy;. In practice, the factor score f; and var(f) are
estimated from the sample. Leverage points would be those observationsthat have
exceedingly large leverage M-distances.
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i Outlier and Leverage Point Detection

Outlier and Leverage Diagnostics
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After computing the two types of M-distances for all observations, PROC CALIS plots the
observationsin a two-dimensional space. The Y-axis represents the residual M-distances
and the X-axis represents the leverage M-distances.

To define outliers, a criterion based on certain alpha-level hasto be used. In the current
example, the alpha-level is0.05, which is the defaultvalue. The horizontalline at about
y=3.6 in this plot represents the criterion for outlier detection. Points above this horizontal
line are outliers. Observations 28 and 81 fall into the region of outliers.

Similarly, the vertical line at about x=2.6 in this plot represents the criterion for detecting
leverage points. Points to the right of this vertical line are leverage points. Observations 2,
87, and 88 fall into the region of leverage points.

Notice that the upperright region is for observations that are both outliers and leverage
points. However, this example does not have any observations in this region.
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- Outlier Detection: Numerical Output

Case

Humbar

a1
28
54
33
61
L1
b

Besidual

(M-Distance)

wWoWw W w W w e

L6057
.B9951
. 43066
17665
.15110
. 06087
.03273

Diagnostics of the 7 Largest Case-Lewvel Residuals (alpha=0.01)

----Diagnostigs—--—

outlier leverage

*

*

It is useful to supplementthe plot of outliers and leverage points with some numerical

results.

PROC CALIS outputs the observations with the largest residual M-distances and the largest
leverage M-distances in two separate tables.

This slide shows the 7 observationswith the largest residual M-distances. Only the first two

@4
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are classified as outliers. None of them are leverage points.

GSas B
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- Leverage Points: Numerical Output

Diagnostics of the B Largest Case-Level Leverages (alpha=0.01)

Case Laeverage —=~-Diagnostiog-—--—
Humber {M-Distance) leverage outlier

a7
88

?.96439 *
2.72440 *
2.692493 *
3 2.15520
2.04016
6 1
b6 1
i 1.

.876893
.. 12951
59244

GSas B

This slides shows the eight observations with the largest leverage M-distances. Only three
of them are leverage points. None of them are outliers.
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B 0-Q Plot of Residual M-Distances

Q-Q Plot of Residuals

a1

Residual (M-distance)

1 2 3
Quantile of Chi-distribution

Once residual M-distances are computed, PROC CALIS can plot them against the theoretical
guantiles. This plot is known as the Q-Q plot in regression diagnostics. In SEM, you can do
the same kind of Q-Q plot to see if the residuals distribute similarly to that of the
theoretical distribution. If the residuals are distributed exactly like the theoretical
distribution, all observations should fall on the straight line with slope=1 in the Q-Q plot.

The major difference between SEM and regression Q-Q plots is that residual M-distances
are always positive in SEM Q-Q plots. The reference distributionin SEM Q-Q plotsis that of
a chi-variate (instead of the normal distribution for regression analysis).

This Q-Q plot shows that the two outliers (Observations 28 and 81) are also much deviated
from the theoretical distribution interms of quantiles.
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Il P-P Plot of Residual M-Distances
P-P Plot of Residuals
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PROC CALIS can also plot the observed percentiles for the residual M-distances againstthe
expected percentiles. Thisis known as the P-P plot in regression analysis. If the residuals
are distributed exactly like that of the theoretical distribution, all observationsshould fall
on the straight line with slope=1.

The P-P plot for the current example shows that several observationshave large deviations
in the middle of distribution.
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I Departures From the Theoretical Distribution

PROC CALIS produces numerical outputthat shows the departures of the observed

residuals from the theoretical distributions.

This slide shows approximately 10 percent of the observationsthat have the largest
departuresin terms of quantile and percentile. Some observations, such as 15, 30, 1, and
72, have residual M-distances that are considered to be deviated from the theoretical

distributionsin terms of both quantile and percentile.

Largest Departures From the Theoretical Residual Distribution
Percentile Case Quantile Percentile
Region Humber Deviation Deviation
(.65,.90) 26 -0.05303
36 -0.05835
40 -0. 050864
15 -0,13083 -0.,06507
a7 -0.05262
71 -0.05145
30 -0.11975 -0.05199
1 0.12349 0.05067
T2 -0.13743 -0.05500
64 -0.12554
(.90,.95) 66 0.13814
>, 95 54 0. 20037
28 0.323%96
81 0.99649
e
@i

GSas B,
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- Residual on Fit Plot - Mechanics

Residual on Fit Plot for mechanics
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Another type of plots for residual diagnosticsis the residual on fit plot. PROC CALIS can
produce the residual on fit plots for all endogenous observed variablesin the model.

Usually, in the residual on fit plots, you expect residuals are distributed randomly and
homogenously along the predicted valuesif the linear model is true. For example, this slide

shows that residuals of mechanics are distributed more-or-less “evenly” at all levels of
predicted values.
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I Residual on Fit Plot - Algebra

Residual on Fit Plot for algebra
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For algebra, the residuals also do not show systematic changes at different levels of the
predicted values.
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I Residual on Fit Plot - Analysis

Residual

Residual on Fit Plot for analysis
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For analysis, however, it seems that the residual variances are getting smaller with higher

predicted values.

GSas B
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B Residual on Fit Plot - Statistics

Reasidual

Residual on Fit Plot for statistics
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For statistics, the residual distribution looks okay.

Gsas | B
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[ ] L]
- Residual on Fit Plot - Vector
Residual on Fit Plot for vectors
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For vector, if you take away the two most extreme negative residuals, the residual
distribution does look fine. But with the two extreme negative residuals, somehow the
picture seems to suggest that residual variances are getting smaller at higher predicted
values. So, although graphical displaysare very useful as residual diagnostictools, they are

not alwaysunambiguous --- sometimes we still need to use our judgments for proper
interpretations.
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Robust Estimation (SAS/STAT 12.1)

0sas .

The robust estimation of PROC CALIS can be viewed as an extension of the robust
regression techniques. The difference is that PROC CALIS can handle a system of linear

equationsinvolvinglatentvariables, instead of a single regression equationin regression
analysis.
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I The ROBUST Option

ods graphics on;

proc calis data~mardia robust residual plots=all;
path Factor ===> mechanics wvectors algebra analysis statistics;
pvar Factor = 1;

run;

ods graphics off;

: 9sas  Hs.

Using robust estimation with PROC CALIS is very easy. All you need to do is to use the
ROBUST option in the PROC CALIS statement. The preceding example is now used to
demonstrate the robust estimation.
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- Robust Estimation Technique in PROC CALIS

Yuan and Hayashi (2010)
Iteratively-reweighted Least Squares (IRLS)

Observations are re-weighted during the estimation

Huber-type weights:
»weight=1 for "normal” observations
»weight <1  for outlying observations with large residuals

The robust estimation techniqgue of PROC CALIS is based on Yuan and Hayashi(2010)
paper.

Essentially, observationsare weighted and re-weighted during the estimation by the Huber-
type weights. Non-outlying (normal) observations will have weights 1 and the outlying
observations will have weights less than 1 during the estimation, which is carried out
iteratively, as suggested by the name of algorithm---IRLS.

The idea of robust estimationis simple. Outlying observationsare down-weighted so that
they cannot skew the estimation.
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Outlier and Leverage Point Detection With Robust

Estimation

Outlier and Leverage Diagnostics
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With the robust estimation, outlier and leverage points would be free from the so-called
masking effect. The masking effect refers to the phenomenon that the presence of some
prominentoutliers might skew the estimation so that the less prominentoutliers could not
be identified. Because robust estimation has already downweighted the outliers during the
estimation, residual diagnostics would not be skewed by the outliers and thus the masking

effect could be unmasked.

This slide show the residual against leverage plot for the identifications of outliersand
leverage points. Because this picture is very similar to the corresponding picture with the
regular ML estimation, we might conclude that no masking effect was presentin the

original ML estimation.
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- Masking Effects and Unmasking

Robust Estimation Regular ML Estimation
Case Residual Case Residual
Humber (M=Distance) outlier Nunber (M-Distance) outlier
a1 4.84486 * 81 4.60517 *
28 3.78838 * 28 3.69951 *
54 3.4734% 54 3.43066
33 3.35818 33 3.17665
61 3.20898 61 3.15110
56 3.10657 56 3.06087
66 3.10424 66 3.03273
.Masking effects is minimal with the regular ML estimation. !

To further substantiate the previous assertion, you can look at the numerical results for
outlier detections. The seven largest residual M-distances are more-or-less the same in the
robust and the regular ML estimations, although the residual M-distances in the robust
estimation are always larger due to the downweightingscheme in estimation. Also, both
estimationsidentify exactly the same set of outliers.
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- Model Fit: Robust and Regular ML

For this particularexample, the robust estimationyields a better model fit---the model fit
chi-squareis smaller in the robust estimation. The SRMR and the RMSEA are much smaller
with the robust estimation. The GFI and Bentler CFl are slight better/higher with the robust

estimation.

Estimations
Robust Estimation Regular ML Estimation
Chi-Square 6.0031 Chi-Square B8.9782
Chi-square DF 5 Chi-S8quare DF 5
Pr > Chi-Square 0.3058 Pr > Chi-Square 0.1099
Standardized RMR (SEMR) 0.0370 Standardized RMR (SRMR) 0.0475
Goodness of Fit Index (GFI) 0.9716 Goodness of Fit Index (GFI) 0.9584
RMSEA Estimate 0.0480 RMSEA Estimate 0.0956
Bentler Comparative Fit Index 0.994% Bentler Comparative Fit Index 0.9791
With the outliers being downweighted in estimation, the robust estimation
indicates a better model fit .
o :
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More About PROC CALIS ....

L

= Many other different modeling languages:
COSAN, FACTOR, LINEQS, MSTRUCT, and
RAM — All support multiple-group analysis and
mean structures

= Estimation methods: ML (default), FIML, GLS,
WLS (ADF), ULS, DWLS, ROBUST (robust ML)

= Standardized solutions with standard error
estimates

In this workshop, | mostly use the PATH modelinglanguage to fit SEM. | also briefly
mentioned the LISMOD as an interface for the LISREL model. There are actually quite a few
more modelinglanguagein PROC CALIS: COSAN, FACTOR, LINEQS, MSTRUCT, and RAM. All
of these languages support multiple-group analysisand mean structure analysis.

| have also used the default ML (maximum likelihood) estimation method in this workshop,
but PROC CALIS supports many other estimation methods as well: GLS (generalize least
squares), WLS (weighted least squares), ULS (unweighted least squares), DWLS (diagonally-
weighted least squares), and FIML (full information maximum likelihood).

| have only used unstandardized results in most examples, but PROC CALIS also provide
standardized solutions with standard error estimates.

Finally, | hope to add more functionalitiesto PROC CALIS in the future.
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- Glossary

Manifest — Observed variables (measured variables) in the data set.

Latent — Unobserved variables.

Endogenous — Dependent /mediating variables; at least one single-headed arrow points to it
used as an outcome variable in an equation; can also be a predictor variable in other
equations,

Exogenous — Independent variables; no single-headed arrows point to it; never used as an
outcome variable in the model, used only as a predictor in the model.

Factor — A latent (unmeasured) variable that is treated as a hypothetical construct
(systematic source) in the model.

Error — An exogenous term for uncertainty (unsystematic source) associated with an
endogenous manifest variable (or any endogenous variable, in a more general
definition).

Disturbance — An exogenous term for uncertainty (unsystematic source) associated with an
endogenous fatent vanable.

Path diagram representation

— Rectangles: Observed / manifest variables.

— Ovals / circles : Latent variables (factors, errors, and disturbances). Errors and
disturbances are not necessarily put into ovals/circles.

GSas B
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- Glossary

— Single-headed arrows: Directed paths, direct effects, path coefficients; specified in the
PATH statement.

— Double-headed arrows that point to individual variables; Variance parameters of
exogenous variables or error variance parameters of endogenous variables; specified in
the PVAR statement.

— Double-headed arrows that point to two distinct variables: Covariance parameters
between exogenous variables or error covariance parameters between endogenons
variables; specified in the PCOV statement.

Fit assessment

—model fit chi-square statistic: Nonsignificance means that the theoretical model is
supported; not a very practical index because it almost always rejects all approximating
models that are practically useful.

— AGFI (adjusted goodness-of-fit index) and Bentler’s CFI {comparative fit index): Two
popular fit indices that indicate good model fit when their values are above 0.9

— SRMR (standardized root mean square residual) and RMSEA (root mean squared error
approximation): Two popular fit indices that indicate good model fit when their values
are below 0.05.

— AIC, CAIC, and SBC: Information criteria for comparnng competing models. The smaller
the better.

GSas B
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