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Python and SAS for advanced analytics: A comparative case study (initial draft for feedback, 2/23/20) 

Doug Thompson, PhD, Director of Advanced Analytics, Rush Health, Chicago IL  

Introduction 

The past few decades have seen the emergence of many software tools for advanced analytics. SAS was 

among the earlier ones and was arguably the gold standard for advanced analytics 20 or so years ago. 

Since then, several other tools for advanced analytics have entered the scene, most notably R and 

Python, both of which are freely available open source software, in contrast to SAS which is commercial 

software. Python in particular has gained popularity for advanced analytics in the past few years. 

Many analysts have opinions about their preferred software, which are frequently expressed on the 

Internet and in other forums. While opinions abound regarding the relative merits of Python and SAS for 

advanced analytics, there have not been a lot of case studies comparing the two in specific advanced 

analytics examples. Such case studies provide a more concrete sense of the similarities and differences, 

facilitating more informed choices based on side-by-side comparison as opposed to opinions which may 

or may not be well-informed. The purpose of this paper is to describe such as case study. 

The focus here is on advanced analytics applications of Python and SAS. Both software packages have 

many other uses, including data visualization, reporting, and data management. These will not be 

addressed. The comparisons of advanced analytics capabilities do not necessarily apply for other types 

of analyses; for example, some would say that Tableau (another commercial software package) is 

excellent for data visualization but crude for advanced analytics. 

The case study involves a common task in advanced analytics: Estimating the association between two 

variables, after adjusting for potential confounders using regression techniques. The context of the case 

study is healthcare. Healthcare data is highly sensitive and protected by legal regulations. To avoid risks 

involved with sensitive data, the case study uses publically available healthcare cost and utilization data 

from the Medical Expenditure Panel Survey (MEPS). MEPS data includes fields similar to what a 

healthcare analyst might use if more granular healthcare data (e.g., claims or electronic medical records) 

were summarized at the person-year level. 

Specifically, the case study looks at the association between having a primary healthcare provider (often 

abbreviated “PCP” for primary care provider) and 1) prior personal characteristics that may explain 

having a PCP (as opposed to not having one), as well as 2) subsequent healthcare expenditures. 

Theoretically, the PCP is supposed to coordinate a patient’s care across all providers (e.g., a variety of 

specialists) which is thought to foster better, more efficient healthcare, leading to better health 

outcomes as well as lower healthcare expenditures. Partly based on this theory, the U.S. Federal 

government (via the Centers for Medicare and Medicaid Services, AKA CMS) as well as commercial 

health insurers have heavily promoted the role of the PCP in healthcare through service delivery models 

such as Accountable Care Organizations. 

In both Python and SAS, a given analysis can be conducted in many different ways. The analyses 

illustrated below show one way to conduct the analyses, but not necessarily the best or most efficient 

way. 
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Methods 

Parallel analyses of MEPS data were conducted using Python and SAS. The Python analyses were 

conducted first, then mirrored using SAS. The SAS analyses generally followed the same steps as Python, 

with some exceptions (e.g., output formatting). 

MEPS has been conducted annually since 1996 by the Agency for Healthcare Research and Quality, 

which is part of the U.S. Department of Health and Human Services. MEPS was designed to describe 

healthcare expenditures, healthcare utilization and health insurance among the U.S. non-

institutionalized, non-military population. MEPS samples households. Information regarding each 

sampled household is collected for a 2-year period (“panel”) in 5 “rounds” of interviews spaced across 

2.5 years. This enables longitudinal analysis of healthcare for individuals in the sampled households 

during the 2-year period covered in the panel. MEPS consists of a series of overlapping panels. The data 

are freely available for download. Instructions for importing the data into SAS are available on the MEPS 

website. Although the data are de-identified to protect respondent anonymity, an individual’s data can 

be tracked across time by tying it to an individual person ID (“DUPERSID”). 

The analyses in this paper used MEPS Panel 20, covering 2015 (“Y1”) and 2016 (“Y2”). For some 

measures, Round 2 (“R2”) is used to represent 2015 and Round 4 (“R4”) is used to represent 2016. Data 

were limited to Panel 20 who had health insurance in both 2015 and 2016, and who had data in both 

2015 and 2016 (the latter condition was true of the vast majority of panel 20 participants).  

Two sets of analyses were conducted. Analysis 1 examined the association between personal 

characteristics in 2015 and having (or not having) a primary healthcare provider (PCP) in 2016. The 

personal characteristics included age, household income, medical expenditures, self-reported health, 

and whether or not the person had a managed care or “gatekeeper” type health insurance plan (which 

theoretically should encourage a PCP relationship). It was hypothesized that individuals with a managed 

care or gatekeeper-type insurance plan in 2015 would more likely to have a usual healthcare provider in 

2016; it was also hypothesized that older and sicker individuals in 2015 would be more likely to have a 

usual healthcare provider in 2016. Analysis 2 examined the association between having a usual 

healthcare provider in 2015 and medical expenditures in 2016, adjusting for personal characteristics in 

2015. It was hypothesized that having a usual healthcare provider in 2015 would be associated with 

lower total medical expenditures in 2016, after adjusting for individuals’ age, health, 2015 medical 

expenditures and other factors. 

Logistic regression was the primary modeling technique used in Analysis 1, while ordinary least squares 

regression was the primary modeling technique used in Analysis 2. In Analysis 2, expenditures were 

modeled on the raw scale as well as log transformed. 

The analyses did not use the MEPS survey weights nor other survey design variables (strata, primary 

sampling units or PSUs). For studies examining associations among variables, survey weights are 

sometimes ignored, under the assumption that relationships among variables will not be materially 

impacted by differential observation weighting. Variance estimation was of only minor interest in the 

analysis. 

Results 

Each step in Analyses 1 and 2 is described, starting with Python, followed by parallel analyses using SAS. 
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1. Read in data 

Python 

MEPS data is published as SAS datasets. Python converts SAS datasets into Python data frames using 

simple syntax as illustrated below (pd.read_sas). Towards the beginning of a program, it is also 

convenient to import Python modules. The pandas module includes the primary functionality illustrated 

in this paper. The MEPS person ID “DUPERSID” is set as an index in the data frame “df” (setting an index 

is optional). 

import pandas as pd 

import numpy as np 

df = pd.read_sas('C:\projects\MEPS\h193.sas7bdat') 

df.set_index(['DUPERSID'],drop=False,inplace=True) 

SAS 

The permanent MEPS dataset mepsdat.h193 is read into a temporary dataset df (the SAS “work” library 

is implicitly called in this syntax). For use in subsetting, a new variable df2_ind is created, coded as 1 if 

the person participated in both the 2015 and 2016 surveys (YEARIND=1), and was in panel 20 and had 

health insurance throughout 2015 (INSURCY1=1) and 2016 (INSURCY2=1). A note is copied from the log 

indicating the number of observations (rows) and variables (columns). The SAS log by default gives the 

information that is called in Python shape, as illustrated below. 

The code in this paper illustrates comments as well as executed commands; in Python, comments can be 

made with lines beginning with “#”, while in SAS one way to make comments is to use a block of text 

beginning with “/*” and ending with “*/”. 

libname mepsdat 'C:\projects\MEPS'; 

data df; 

set mepsdat.h193; 

df2_ind = (YEARIND=1 and PANEL=20 and (INSURCY1 not in(-1,3,7)) and (INSURCY2 not in(-

1,3,7))); 

run; 

/* 

NOTE: There were 17017 observations read from the data set MEPSDAT.H193. 

NOTE: The data set WORK.DF has 17017 observations and 3592 variables. 

*/ 

2. Select in-scope cases 

Python 

After the Python comment lines, in-scope rows are selected and read into data frame “df2”. This is done 

using the .loc syntax (in Python, as in SAS, there are several ways to select subsets of rows and this is 

just one way). Rows representing individuals with data in both 2015 and 2016, in panel 20 and with 
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health insurance in both years are selected. The syntax is roughly similar to the SAS syntax used to 

define “df2_ind” but with a little more typing. 

# Limit to yearind=1 (respondent in both 2015 and 2016) and panel=20 and 

# had insurance in both years 

df2 = df.loc[(df['YEARIND']==1) & (df['PANEL']==20) & (df['INSURCY1'].isin([-

1,3,7])==False) &  

             (df['INSURCY2'].isin([-1,3,7])==False)] 

The next few lines are for checking the resulting data frame (df2). Shape is similar to the default 

information output to the SAS log when a dataset is created, i.e., the number of rows and columns. The 

frequency of each value of each variable in df2 is checked to ensure that no rows with out-of-scope 

values are retained (e.g., -1, 3 or 7 for INSURCY1). Combining Python print statements with methods 

such as pd.value_counts, which displays the frequency of each level of a categorical variable, provides a 

nice, flexible way of displaying and annotating a variety of results. 

print('df shape:', df.shape) 

print('df2 shape:', df2.shape) 

# Check that values are being properly excluded 

print('INSURCY1 in df...', '\n', pd.value_counts(df[' INSURCY1']), '\n', 

      ' INSURCY1 in df2...', '\n', pd.value_counts(df2['INSURCY1']), '\n') 

Below is the output of the Python commands above. This shows the rows retained after keeping only 
the in-scope cases and confirms (using INSURCY1 as an example) that rows with out-of-scope values 
such as -1.0 are excluded from df2.  
 

df shape: (17017, 3591) 

df2 shape: (14422, 3591) 

 

INSURCY1 in df...  

  1.0    7943 

 2.0    4698 

 3.0    1870 

 5.0    1023 

 4.0     789 

 6.0     417 

-1.0     230 

 7.0      25 

 8.0      22 

Name: INSURCY1, dtype: int64  

 INSURCY1 in df2...  

 1.0    7705 

2.0    4556 

5.0     995 

4.0     741 

6.0     403 

8.0      22 

 

SAS 
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The variable df2_ind defined when df was created is used in a where clause to retain only the in-scope 

observations within df2. The SAS log (pasted in between “/*” and “*/”) shows that 14,422 observations 

(rows) are retained, exactly the same result as df2.shape in Python. 

This is also a convenient place within the SAS code to define two new indicators, that is, variables coded 

as 1 or 0: has_usc_R2 and has_usc_R4. These are coded as 1 = has usual healthcare provider in Round 2 

(or Round 4 respectively) vs. 0 = does not have a usual healthcare provider. Having a usual healthcare 

provider is indicated by HAVEUS2 = 1; importantly, we also include the requirement that the usual 

healthcare provider be a person as opposed to facility (PROVTY2 either 2 or 3) and that person must be 

either a physician with specialty of internal medicine, family medicine or pediatrics, or must be a nurse 

practitioner or physician assistant (TYPEPE2 1,2,3,9, or 10). This is how primary care physicians are 

frequently defined in Accountable Care Organizations. 

data df2; 

set df(where=(df2_ind=1)); 

has_usc_R2 = (HAVEUS2=1 and (PROVTY2 in(2,3)) and (TYPEPE2 in(1,2,3,9,10))); 

has_usc_R4 = (HAVEUS4=1 and (PROVTY4 in(2,3)) and (TYPEPE4 in(1,2,3,9,10))); 

run; 

/* 

NOTE: There were 14422 observations read from the data set WORK.DF. 

      WHERE df2_ind=1; 

NOTE: The data set WORK.DF2 has 14422 observations and 3592 variables. 

*/ 

3. Define the main grouping variable (has usual care provider) 

Python 

This is the place where we define HAVEUS2 and HAVEUS4 in the Python program. The syntax used to 

define these indicators is roughly similar to the SAS syntax used above. 

# Define having usual care providers in R2 and R4 

# HAVEUS2=has usual care provider, PROVTY2=usual care provider is person (as opposed 

to facility), and 

# TYPEPE2 is usual care provider is MD (family med, internal med, peds) or NP or PA 

df2['has_usc_R2'] = ((df2['HAVEUS2']==1) & (df2['PROVTY2'].isin([2,3])) &  

                     (df2['TYPEPE2'].isin([1,2,3,9,10])))*1 

 

df2['has_usc_R4'] = ((df2['HAVEUS4']==1) & (df2['PROVTY4'].isin([2,3])) &  

                     (df2['TYPEPE4'].isin([1,2,3,9,10])))*1 

In the Python code, some descriptive analyses were done with HAVEUS2 and HAVEUS4. One would 

expect there to be an association between having a usual healthcare provider in two consecutive years – 

one’s primary healthcare provider is theoretically supposed to be someone with whom one has a long-

term relationship, who coordinates all of one’s healthcare, who handles preventive services, and so 

forth. Pd.crosstab is a method that provides a cross-tabluation of HAVEUSR2 vs. HAVEUSR4 – the fact 

that the counts are heavily concentrated on the diagonals suggests a strong association. Syntax is also 

shown to compute the percentage of individuals who had a usual healthcare provider in Round 2 and 
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who also had a usual healthcare provider in Round 4 – it is 69.72%. Most of those who had a usual 

healthcare provider in 2015 also had one in 2016, as one would expect. 

# Crosstab having usual care provider in R2 vs R4 

print('What is the association of have_usc_R2 and have_usc_R4?','\n', 

      pd.crosstab(df2['has_usc_R2'],df2['has_usc_R4'],margins=True),'\n') 

 

# Of those with a usual care provider in R2, what percent also had a usual care 

provider in R4? 

had_usc_r2 = df2.loc[(df2['has_usc_R2']==1)] 

had_usc_r2 = had_usc_r2[['has_usc_R4']] 

x=had_usc_r2.mean().astype(float).map("{:.2%}".format) 

print('Percent with USC in R2 who also had USC in R4: ',x) 

What is the association of have_usc_R2 and have_usc_R4?  

 has_usc_R4     0     1    All 

has_usc_R2                    

0           8423  1402   9825 

1           1392  3205   4597 

All         9815  4607  14422  

 

Percent with USC in R2 who also had USC in R4:  has_usc_R4    69.72% 

dtype: object 

 

SAS 

The grouping variables were already defined when creating df2, as described above. The code below 

shows one possible SAS syntax to quantify the association between HAVEUS2 and HAVEUS4 – all of the 

desired results are provided by default in SAS PROC FREQ. The PROC FREQ results exactly replicate the 

Python results shown above, as one can see in the results table. The highlighted result in the table 

indicates that 69.72% of those with a usual healthcare provider in Round 2 also had one in Round 4. 

Although the default results of PROC FREQ provide a lot of good information, it can be too much 

information (e.g., row, column and total percentages in every step). One can use options in PROC FREQ 

to limit the default output. 

ods rtf file='C:\projects\SAS_python_compare\crosstab_usucare.rtf'; 

proc freq data=df2; 

tables has_usc_R2*has_usc_R4; 

run; 

ods rtf close; 
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Table of has_usc_R2 by has_usc_R4 

has_usc_R2 has_usc_R4 

Frequency 

Percent 

Row Pct 

Col Pct 0 1 Total 

0 8423 

58.40 

85.73 

85.82 

1402 

9.72 

14.27 

30.43 

9825 

68.13 

 

 

1 1392 

9.65 

30.28 

14.18 

3205 

22.22 

69.72 

69.57 

4597 

31.87 

 

 

Total 9815 

68.06 

4607 

31.94 

14422 

100.00 

 

4. Create adjustment variables 

This is by far the most intensive part of the analysis from a coding perspective, due to the need to 

handle certain MEPS values such as “refused” or “don’t know” (often denoted with negative sign in the 

MEPS data). One strategy is to replace such values with imputed values so that the cases do not get 

dropped in subsequent regression modeling analyses. It can be debated whether it is optimal to use the 

median or mode to replace responses such as “don’t know”. For certain purposes such as predictive 

modeling, especially when such values are rare, it may be fine to handle them this way. For other 

purposes, this may not be an optimal approach. Regardless, it is good to know how to execute such 

imputation, so code to execute it is illustrated here.  

Python 

First a Python data frame, including just the analytic adjustment variables and the person ID, is created 

(analysis1_predictors).  

# Define variables that will be used for adjustment 

analysis1_predictors = 

df2[['DUPERSID','RTHLTH2','MNHLTH2','TOTEXPY1','AGEY1X','FAMINCY1', 

                            'MCRPHOY1','MCDHMOY1','MCDMCY1','PRVHMOY1']] 

print(analysis1_predictors.shape) 

# print(analysis1_predictors.head()) 
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Next, a custom function is created to convert to missing (“None”) the values that are less than 0, which 

is how MEPS marks “refused,” “don’t know” and similar values. Variables with negative values 

converted to missings have the same names as the original variables, except the variable name starts 

with an underscore (e.g., RTHLTH2 becomes _RTHLTH2). The respective variable sets are listed in 

original_vars and recoded_vars. 

# Create recoded variables, denoted by _ at the beginning, where non-informative 

values are represented as missing values     

def convert_to_missing(var_new,var): 

    analysis1_predictors[var_new] = analysis1_predictors[var] 

    analysis1_predictors.loc[analysis1_predictors[var_new]<0,var_new]=None 

 

original_vars = ['RTHLTH2','MNHLTH2','TOTEXPY1','AGEY1X','FAMINCY1', 

                            'MCRPHOY1','MCDHMOY1','MCDMCY1','PRVHMOY1'] 

recoded_vars = ['_RTHLTH2','_MNHLTH2','_TOTEXPY1','_AGEY1X','_FAMINCY1', 

                            '_MCRPHOY1','_MCDHMOY1','_MCDMCY1','_PRVHMOY1'] 

 

A for loop is used to run through the function for all pairs of variables. 

for x,y in zip(original_vars,recoded_vars): 

    convert_to_missing(y,x) 

Next, a function is created to validate the results of the process above, ensuring that it worked as 

intended. This compares the variable frequency distribution before vs. after negative values are 

replaced with missing values. 

# Check selected variables to make sure that the conversion to missing worked as 

intended 

def validate_missing_conversion(x,y): 

    print('Original distribution:',x,pd.value_counts(analysis1_predictors[x]),'\n', 

         'New distribution:',y,pd.value_counts(analysis1_predictors[y]),'\n') 

 

validate_missing_conversion('RTHLTH2','_RTHLTH2') 

validate_missing_conversion('MCRPHOY1','_MCRPHOY1') 

 

At this point, a new variable is created indicating whether the person’s health insurance was a 

gatekeeper-type plan or not; in this case, mgd_care_ins_R2 is coded as 1. If the insurance plan is not a 

gatekeeper-type plan, then mgd_care_ins_R2 is coded as 0. 

# Define composite variable -- covered by gatekeeper/managed care insurance plan 

# MCRPHOY1 = COV BY MEDICARE MANAGED CARE - 12/31/15 
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# MCDHMOY1 = COV BY MCAID/SCHIP HMO-R3 TIL 12/31/15 

# MCDMCY1 = CV MCD/CHIP GTKPR PLN-R3 TIL 12/31/15 

# PRVHMOY1 = COVERED BY PRIVATE HMO-R3 TIL 12/31/15 

analysis1_predictors['mgd_care_ins_R2'] = ((analysis1_predictors['_MCRPHOY1']==1) | 

(analysis1_predictors['_MCDHMOY1']==1) |  

                                           (analysis1_predictors['_MCDMCY1']==1) | 

(analysis1_predictors['_PRVHMOY1']==1))*1 

analysis1_predictors.loc[analysis1_predictors['mgd_care_ins_R2']<1,'mgd_care_ins_R2']=

0 

The following sections of code impute the median of the non-missing values for missings (for continuous 

varibles) or the mode for categorical variables. Two separate functions are created to do this, 

impute_median_continuous and impute_mode_categorical. 

In the impute_median_continuous function, most of the work is done by fillna().median() method. The 

rest of the code within the function is used for validation – the distribution of the variable before vs. 

after median imputation is displayed. 

# Impute median for missing if continuous 

def impute_median_continuous(var): 

    print(var+', Before:',analysis1_predictors[var].mean(),', 

missing:',analysis1_predictors[var].isnull().sum(), 

          ', non-missing:',analysis1_predictors[var].notnull().sum()) 

    analysis1_predictors[var] = 

analysis1_predictors[var].fillna(analysis1_predictors[var].median()) 

    print(var+', After:',analysis1_predictors[var].mean(),', 

missing:',analysis1_predictors[var].isnull().sum(), 

          ', non-missing:',analysis1_predictors[var].notnull().sum(),'\n') 

 

impute_median_continuous('_TOTEXPY1') 

impute_median_continuous('_AGEY1X') 

impute_median_continuous('_FAMINCY1') 

In the impute_mode_categorial function, the workhorse is the fillna(mode) method. Again, there is 

some code to check the frequency distribution before vs. after imputation of the mode. 

# Impute mode for missing if categorical 

def impute_mode_categorical(var,mode): 

    print(var+', Before:','\n',pd.value_counts(analysis1_predictors[var])) 

    analysis1_predictors[var] = analysis1_predictors[var].fillna(mode) 

    print(var+', After:','\n',pd.value_counts(analysis1_predictors[var])) 
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impute_mode_categorical('_RTHLTH2',1) 

impute_mode_categorical('_MNHLTH2',1) 

 

Finally, data frame new_preds is created, including the person ID along with the variables with 

imputation, as well as the new variable mgd_care_ins_R2. 

# new_preds = Resulting datasets of predictors, negative values converted to NA and 

replaced with median or mode 

new_preds = 

analysis1_predictors[['DUPERSID','_RTHLTH2','_MNHLTH2','_TOTEXPY1','_AGEY1X','_FAMINCY

1','mgd_care_ins_R2']] 

old_preds = df2[['DUPERSID','RTHLTH2','MNHLTH2','TOTEXPY1','AGEY1X','FAMINCY1', 

                            'MCRPHOY1','MCDHMOY1','MCDMCY1','PRVHMOY1']] 

Now we illustrate the output of the code described above. Output from removing values <0: 

Original distribution: RTHLTH2  1.0    4692 

 2.0    4224 

 3.0    3677 

 4.0    1369 

 5.0     397 

-1.0      57 

-8.0       4 

-7.0       2 

Name: RTHLTH2, dtype: int64  

 New distribution: _RTHLTH2 1.0    4692 

2.0    4224 

3.0    3677 

4.0    1369 

5.0     397 

Name: _RTHLTH2, dtype: int64  

 

Output after imputing the mode for missing: 

_RTHLTH2, Before:  

 1.0    4692 

2.0    4224 

3.0    3677 

4.0    1369 

5.0     397 

Name: _RTHLTH2, dtype: int64 

_RTHLTH2, After:  

 1.0    4755 

2.0    4224 

3.0    3677 

4.0    1369 

5.0     397 

 

Finally, the modified variables are merged back with the rest of the data, to create the new data frame 

df3 that is used for subsequent analyses. 

# Join adjustment variables with original data frame 

df3 = pd.merge(df2, new_preds, left_index=True, right_index=True, how='left') 



11 
 

print('df2 shape: ',df2.shape) 

print('df3 shape: ',df3.shape) 

df2 shape:  (14422, 3593) 

df3 shape:  (14422, 3600) 

 

The shape output shows, as would be expected, that df3 has the same number of rows as df2 (14,422 

each) but df3 has a few more columns, i.e., the new variables with imputed values. 

SAS 

In SAS, arrays are defined including the original variables (original_vars) and the variables that will 

include imputed values for “refused,” “don’t know” etc (recoded_vars). A do-loop loops through the 

arrays, first copying original_vars{i} into recoded_vars{i}, then converting negative values of 

recoded_vars{i} to missing values, denoted with a period (“.”) in SAS for numeric variables. Immediately 

below this, indicator mgd_care_ins_R2 is defined, which has nothing to do with the imputation process 

used for the other adjustment variables, this is simply a convenient place to define it. 

data df2b; 

set df2; 

array original_vars{*} RTHLTH2 MNHLTH2 TOTEXPY1 AGEY1X FAMINCY1  

MCRPHOY1 MCDHMOY1 MCDMCY1 PRVHMOY1; 

array recoded_vars{*} _RTHLTH2 _MNHLTH2 _TOTEXPY1 _AGEY1X _FAMINCY1  

_MCRPHOY1 _MCDHMOY1 _MCDMCY1 _PRVHMOY1; 

 

do i=1 to dim(original_vars); 

   recoded_vars{i}=original_vars{i}; 

   if recoded_vars{i}<0 then recoded_vars{i}=.; 

end; 

 

mgd_care_ins_R2=(_MCRPHOY1=1 or _MCDHMOY1=1 or _MCDMCY1=1 or _PRVHMOY1=1); 

run; 

 

Next PROC MEANS and FREQ are used to find the median and mode of the continuous and categorical 
adjustment variables, respectively. Then in df3, these values are imputed for missings in the data set 
df2c. This approach is manual and inelegant, and it would not be practical if there were many 
adjustment variables. In the latter case, writing a macro which would read the median or mode into 
macro variables would be a more automated strategy. However, this would take a lot more code typing.  
 

proc means data=df2b median; 

var _TOTEXPY1 _AGEY1X _FAMINCY1; 

run; 

proc freq data=df2b; 

tables _RTHLTH2 _MNHLTH2; 

run; 

 

data df2c; 

set df2b; 

if _TOTEXPY1=. then _TOTEXPY1=894; 

if _AGEY1X=. then _AGEY1X=35; 

if _FAMINCY1=. then _FAMINCY1=47840; 

if _RTHLTH2=. then _RTHLTH2=1; 

if _MNHLTH2=. then _MNHLTH2=1; 

run; 

Next we confirm that SAS produces the same results from imputation as obtained in Python: 
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ods rtf file='C:\projects\SAS_python_compare\illustrate_handling_miss_imp.rtf'; 

title 'Original variable and with values removed'; 

proc freq data=df2b; 

tables RTHLTH2 _RTHLTH2; 

run; 

title 'Recoded variable with mode imputation'; 

proc freq data=df2c; 

tables _RTHLTH2; 

run; 

title ' '; 

ods rtf close; 

Results are as follows, using RTHLTH2 as an example: 

PERCEIVED HEALTH STATUS - RD 2 

RTHLTH2 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

-8 4 0.03 4 0.03 

-7 2 0.01 6 0.04 

-1 57 0.40 63 0.44 

1 4692 32.53 4755 32.97 

2 4224 29.29 8979 62.26 

3 3677 25.50 12656 87.75 

4 1369 9.49 14025 97.25 

5 397 2.75 14422 100.00 

 

_RTHLTH2 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 4692 32.68 4692 32.68 

2 4224 29.42 8916 62.09 

3 3677 25.61 12593 87.70 

4 1369 9.53 13962 97.24 

5 397 2.76 14359 100.00 

Frequency Missing = 63 
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_RTHLTH2 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 4755 32.97 4755 32.97 

2 4224 29.29 8979 62.26 

3 3677 25.50 12656 87.75 

4 1369 9.49 14025 97.25 

5 397 2.75 14422 100.00 

 

5. Descriptive analysis of association between having a usual healthcare provider and the 

analytic covariates 

Python 

In Analysis 1, descriptive statistics are broken out by whether or not a respondent had a usual 

healthcare provider in round 4 (R4) of 2016 (has_usc_R4), which is the analytic outcome variable. 

Specifically, the analysis describes the distribution of potential predictors in 2015 based on whether or 

not the respondent had a usual healthcare provider in 2016. 

To accomplish this in Python, first has_usc_R4 is tagged as the grouping variable in df3 using groupby. 

Then the agg method is used to define descriptive statistics for the R2 predictors (either mean, median, 

or both, the relevant statistics are chosen for each variable) and the results are output to desctab. 

# Initial descriptive analysis 

# Group by has_usc_R4 (the analysis dependent variable) 

gb = df3.groupby(['has_usc_R4']) 

# Use different summary statistics for different measures 

desctab = gb.agg({'_RTHLTH2' : 'mean','_MNHLTH2' : 'mean', 

        '_TOTEXPY1' : ['mean','median'],'_AGEY1X' : 'mean', 

        '_FAMINCY1' : ['mean','median'],'mgd_care_ins_R2' : 'mean'}) 

Next a formatting dict is created to format the descriptive statistics. 

desctab.index.name = 'Has usual care provider, R4' 

format_dict = {('_RTHLTH2', 'mean'):'{:,.2f}', 

               ('_MNHLTH2', 'mean'):'{:,.2f}', 

               ('_TOTEXPY1', 'mean'):'${0:,.0f}', 

               ('_TOTEXPY1', 'median'):'${0:,.0f}', 

               ('_AGEY1X', 'mean'):'{:,.1f}', 

               ('_FAMINCY1', 'mean'):'${0:,.0f}', 

               ('_FAMINCY1', 'median'):'${0:,.0f}', 
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               ('mgd_care_ins_R2', 'mean'):'{:.0%}'} 

Finally the table is printed: 

desctab.style.format(format_dict) 

The resulting table is displayed below. 

 _RTHLTH2 _MNHLTH2 _TOTEXPY1 _AGEY1X _FAMINCY1 mgd_care_ins_R2 

 mean mean mean median mean mean median mean 

Has usual care 

provider, R4 
        

0 2.15 1.95 $3,844 $676 33.5 $62,825 $45,647 45% 

1 2.29 2.03 $6,041 $1,582 42.4 $69,376 $52,400 42% 

 

SAS 

The descriptive statistics are generated using SAS PROC MEANS. Instead of the groupby method, 

breakouts by has_usc_R4 are achieved by using a CLASS statement in PROC MEANS. No attempt is made 

to format the results, but this can also be done in SAS, for example by putting the results to an output 

dataset using ODS and then formatting the resulting table with SAS format statements. 

ods rtf file='C:\projects\SAS_python_compare\adjustment_descrpt.rtf'; 

proc means data=df2c mean median; 

class has_usc_R4; 

var _RTHLTH2 _MNHLTH2 _TOTEXPY1 _AGEY1X _FAMINCY1 mgd_care_ins_R2; 

run; 

ods rtf close; 

The results are exactly the same as in Python, except for rounding and formatting. 
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has_usc_R4 N Obs Variable Mean Median 

0 9815 _RTHLTH2 

_MNHLTH2 

_TOTEXPY1 

_AGEY1X 

_FAMINCY1 

mgd_care_ins_R2 

2.1548650 

1.9496689 

3844.28 

33.4615385 

62824.76 

0.4543046 

2.0000000 

2.0000000 

676.0000000 

31.0000000 

45647.00 

0 

1 4607 _RTHLTH2 

_MNHLTH2 

_TOTEXPY1 

_AGEY1X 

_FAMINCY1 

mgd_care_ins_R2 

2.2889082 

2.0290862 

6040.92 

42.3535924 

69375.69 

0.4180595 

2.0000000 

2.0000000 

1582.00 

46.0000000 

52400.00 

0 

 

6. Logistic regression analysis 

Python 

The next step in Analysis 1 is to model the probability of having a usual healthcare provider in 2016 as a 

function of personal characteristics measured in 2015 (i.e., age, income, self-reported health status, 

healthcare expenditures and whether or not the respondent had a managed care insurance plan). 

Logistic regression is one of the most common techniques used to do this kind of modeling. The 

outcome is binary (has_usc_R4 coded as “yes” = 1 or “no” = 0) and the 2015 predictor variables are 

treated as continuous. One could argue that the self-reported health status variables should be treated 

as categorical, but that is not illustrated here. 

The statsmodels library is used to execute the logistic regression. 

import statsmodels.api as sm 

Because the predictors are scaled differently, some of the model coefficients would appear very small if 

not rescaled, so that is done here for the predictors on a dollars scale. The rescaling is simply division by 

$10,000, so that the rescaled value is on a per-$10k scale. 

# re-scale the $ variables because otherwise the coefficients are very small 

df3['_TOTEXPY1_10k'] = df3['_TOTEXPY1']/10000 

df3['_FAMINCY1_10k'] = df3['_FAMINCY1']/10000 

If the model is to include an intercept term, that needs to be coded and represented in the model. 

df3['intercept'] = 1 

The following code estimates the logistic regression model. Basic results are printed. 
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logit_model = 

sm.Logit(df3['has_usc_R4'],df3[['intercept','_RTHLTH2','_MNHLTH2','_TOTEXPY1_10k','_AG

EY1X', 

                                              '_FAMINCY1_10k','mgd_care_ins_R2']]) 

result = logit_model.fit() 

print(result.summary()) 

The results are shown below. 

Optimization terminated successfully. 

         Current function value: 0.609358 

         Iterations 5 

                           Logit Regression Results                            

============================================================================== 

Dep. Variable:             has_usc_R4   No. Observations:                14422 

Model:                          Logit   Df Residuals:                    14415 

Method:                           MLE   Df Model:                            6 

Date:                Sun, 19 Jan 2020   Pseudo R-squ.:                 0.02728 

Time:                        12:26:02   Log-Likelihood:                -8788.2 

converged:                       True   LL-Null:                       -9034.6 

Covariance Type:            nonrobust   LLR p-value:                2.768e-103 

=================================================================================== 

                      coef    std err          z      P>|z|      [0.025      0.975] 

----------------------------------------------------------------------------------- 

intercept          -1.3942      0.058    -24.018      0.000      -1.508      -1.280 

_RTHLTH2           -0.0094      0.023     -0.406      0.685      -0.055       0.036 

_MNHLTH2           -0.0023      0.023     -0.097      0.923      -0.048       0.044 

_TOTEXPY1_10k       0.0631      0.015      4.322      0.000       0.035       0.092 

_AGEY1X             0.0150      0.001     17.962      0.000       0.013       0.017 

_FAMINCY1_10k       0.0148      0.003      4.959      0.000       0.009       0.021 

mgd_care_ins_R2    -0.0798      0.037     -2.149      0.032      -0.153      -0.007 

=================================================================================== 

 

Greater healthcare expenditures, greater family income and older age in 2015 were associated with a 

greater likelihood of having a usual healthcare provider in 2016. Interestingly, having a managed care or 

gatekeeper-type of insurance plan in 2015 was also associated with increased likelihood of having a 

usual healthcare provider in 2016, but in the opposite direction as would be expected -- one would 

expect such an insurance plan to encourage a relationship with a usual healthcare provider. 

SAS 

In SAS, the modeling is accomplished using PROC LOGISTIC. An intercept term is included by default and 

does not need to be explicitly coded. Whereas Python by default models the probability of the 1 level, 

SAS by default models the probability of the 0 level; the “descending” option in the PROC LOGISTIC 

statement is one way to model the probability of 1. 

 

data df2d; 

set df2c; 

_TOTEXPY1_10k=_TOTEXPY1/10000; 

_FAMINCY1_10k=_FAMINCY1/10000; 

run; 

 

ods rtf file='C:\projects\SAS_python_compare\logistic_compare1.rtf'; 

proc logistic data=df2d descending; 
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model has_usc_R4 = _RTHLTH2 _MNHLTH2 _TOTEXPY1_10k _AGEY1X _FAMINCY1_10k 

mgd_care_ins_R2; 

run; 

ods rtf close; 

 

Partial output of SAS PROC LOGISTIC is shown below. The coefficients and standard errors are exactly 

the same as in Python. For statistical tests (null hypothesis that the parameter is 0), SAS by default uses 

Wald tests whereas Python by default uses z-tests. The conclusions are nearly the same. 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 -1.3942 0.0580 576.8483 <.0001 

_RTHLTH2 1 -0.00945 0.0233 0.1644 0.6851 

_MNHLTH2 1 -0.00226 0.0234 0.0093 0.9230 

_TOTEXPY1_10k 1 0.0631 0.0146 18.6833 <.0001 

_AGEY1X 1 0.0150 0.000838 322.6157 <.0001 

_FAMINCY1_10k 1 0.0148 0.00298 24.5925 <.0001 

mgd_care_ins_R2 1 -0.0798 0.0371 4.6198 0.0316 

 

 

Analysis 2 

The focus of Analysis 2 was to explain the association between having a usual healthcare provider in 

2015 and total healthcare expenditures in 2016, after adjusting for other 2015 measures that might 

influence 2016 healthcare spend. 

7. Define variables and descriptive analysis 

Python 

Matplotlib is first imported to execute some charts of 2016 healthcare expenditures in relation to 

personal characteristics measured in 2015. Data frame df4 is created, keeping only the variables that are 

needed for Analysis 2. 

import matplotlib.pyplot as plt 

from matplotlib.ticker import FuncFormatter 

df4 = 

df3[['TOTEXPY2','_TOTEXPY1_10k','_FAMINCY1_10k','_RTHLTH2','_MNHLTH2','_TOTEXPY1','_AG

EY1X', 

           '_FAMINCY1','mgd_care_ins_R2','has_usc_R4','has_usc_R2']] 
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As an initial step, descriptive statistics are examined. For continuous variables measured in 2015, 

categories (“bins”) were created, using either quartiles (for 2015 healthcare expenditures and family 

income) or pre-specified meaningful categories (age in 2015). The quartiles were provided by the 

describe() method. The pd.cut method was used to create categorized versions of these variables, with 

labels that were also specified. 

df4.describe() 

# For income and expenditures, group by quartile 

_TOTEXPY1_bins = [0,200,894,3455,1000000] 

_TOTEXPY1_bins_label = ['0 to 200','201 to 894','895 to 3455','3456 and up'] 

df4['_TOTEXPY1_binned'] = pd.cut(df4['_TOTEXPY1'], _TOTEXPY1_bins, 

labels=_TOTEXPY1_bins_label) 

 

_FAMINCY1_bins = [0,22000,47840,88996,1000000] 

_FAMINCY1_bins_label = ['0 to 22000','22001 to 47840','47841 to 88996','88997 and up'] 

df4['_FAMINCY1_binned'] = pd.cut(df4['_FAMINCY1'], _FAMINCY1_bins, 

labels=_FAMINCY1_bins_label) 

 

# For age, group by intuitively meaningful categories (children, younger adult, older 

adult, Medicare age) 

_AGEY1X_bins = [0,18,44,64,110] 

_AGEY1X_bins_label = ['0 to 18','19 to 44','45 to 64','65 and up'] 

df4['_AGEY1X_binned'] = pd.cut(df4['_AGEY1X'], _AGEY1X_bins, 

labels=_AGEY1X_bins_label) 

 

Next, the custom function exp2_byvar is created to provide descriptive statistics for 2016 medical 

expenditures (“exp2” in the function name) by personal characteristics measured in 2015 (“byvar” in the 

name). The 2015 personal characteristics used in the descriptive analysis are all categorical – specifically, 

the binned versions of 2015 medical expenditures, income and age, along with self-rated health (ordinal 

with a small number of categories), having a usual healthcare provider (binary) and having a managed 

care type of insurance plan (binary). The first step is to print a frequency table of each 2015 variable, 

using pd.value counts. Then groupby is used to create a temporary data frame, temp, grouped by the 

2015 variable, showing the mean of 2016 medical expenditures (TOTEXP2) within each category. Then a 

figure is created of temp (plt.figure), with the y-axis formatted so that it clearly displays 2016 healthcare 

expenditures on the dollars scale. 

def exp2_byvar(byvar): 

    print('byvar is:',byvar,'\n',pd.value_counts(df4[byvar])) 

    temp = df4['TOTEXPY2'].groupby(df4[byvar]).mean() 

    print(temp) 
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    plt.figure(); 

    ax = temp.plot.bar() 

    ax.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '${0:,.0f}'.format(y)))  

    print('\n') 

A for loop is used to call function exp2_byvars for each of the 2015 variables, as shown below.     

byvars = 

['_TOTEXPY1_binned','_FAMINCY1_binned','_AGEY1X_binned','_RTHLTH2','_MNHLTH2','mgd_car

e_ins_R2','has_usc_R2'] 

for var in byvars: 

    exp2_byvar(var) 

Below is an example of one of the graphs produced by this function, showing average 2016 medical 

expenditures by category of age in 2015. 

 

 

SAS 

First PROC UNIVARIATE is used to obtain the 25th, 50th and 75th percentiles of 2015 medical expenditures 

and family income. 

proc univariate data=df2d; 

var _TOTEXPY1 _FAMINCY1; 

run; 
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The next step is to define the categories for each of the continuous variables. One way to do this is 
illustrated below. 

data df2d; 

set df2d; 

if _TOTEXPY1 ne . then do; 

   if _TOTEXPY1<=200 then _TOTEXPY1_bins=1; 

   else if _TOTEXPY1<=894 then _TOTEXPY1_bins=2; 

   else if _TOTEXPY1<=3455 then _TOTEXPY1_bins=3; 

   else _TOTEXPY1_bins=4; 

end; 

 

if _FAMINCY1 ne . then do; 

   if _FAMINCY1<=22000 then _FAMINCY1_bins=1; 

   else if _FAMINCY1<=47840 then _FAMINCY1_bins=2; 

   else if _FAMINCY1<=88996 then _FAMINCY1_bins=3; 

   else _FAMINCY1_bins=4; 

end; 

 

if _AGEY1X ne . then do; 

   if _AGEY1X<=18 then _AGEY1X_bins=1; 

   else if _AGEY1X<=44 then _AGEY1X_bins=2; 

   else if _AGEY1X<=64 then _AGEY1X_bins=3; 

   else _AGEY1X_bins=4; 

end; 

run; 

In SAS, PROC FORMAT is a convenient method to create custom formats for variables, as shown below. 

proc format; 

value TOTEXPY1_binf 1='0 to 200' 2='201 to 894' 3='895 to 3455' 4='3456 and up'; 

value FAMINCY1_binf 1='0 to 22000' 2='22001 to 47840' 3='47841 to 88996' 4='88997 and 

up'; 

value AGEY1X_binf 1='0 to 18' 2='19 to 44' 3='45 to 64' 4='65 and up'; 

run; 

PROC SGPLOT is used to create a column chart showing mean 2016 medical expenditures for each 2015 
age category. 

proc sgplot data=df2d; 

format TOTEXPY2 dollar10.; 
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format _AGEY1X_bins AGEY1X_binf.; 

  vbar _AGEY1X_bins / response=TOTEXPY2 stat=mean; 

run; 

The figure below is the output of PROC SGPLOT. It is basically similar to the chart produced by Python. 

 

 

8. Modeling the association of having a usual healthcare provider in year 1 with total medical 

expenditures in year 2 

The final step in Analysis 2 is to use regression to model the association between 2016 healthcare 

expenditures and having a usual healthcare provider in 2015, after adjusting for other personal 

characteristics measured in 2015. 

Python 

The distribution of healthcare expenditures is usually skewed with a long right tail, because few 

individuals have very high expenditures and many values are concentrated at the low end of the scale. 

With this distribution, basic assumptions of ordinary least squares regression, such as normally 

distributed residuals, are unlikely to be met. Therefore, 2016 medical expenditures were log 

transformed prior to modeling. Models were created on both the original dollars scale and the log-

transformed dollars scale. 

# Log transform Y2 expenditures 

df4['ln_TOTEXPY2'] = np.log(df4['TOTEXPY2']+1) 
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Next ordinary least squares regression models are created, after coding the intercept term as was done 

for the logistic regression models in Analysis 1. Separate models are created on the original and log-

transformed dollars scales. Model fit and coefficients with statistical tests are printed. 

df4['intercept'] = 1 

 

# Original scale Y2 spend 

ols_model = 

sm.OLS(df4['TOTEXPY2'],df4[['intercept','_RTHLTH2','_MNHLTH2','_TOTEXPY1_10k','_AGEY1X

', 

                                              

'_FAMINCY1_10k','mgd_care_ins_R2','has_usc_R2']]) 

# Log transformed Y2 spend 

ols_ln_model = 

sm.OLS(df4['ln_TOTEXPY2'],df4[['intercept','_RTHLTH2','_MNHLTH2','_TOTEXPY1_10k','_AGE

Y1X', 

                                              

'_FAMINCY1_10k','mgd_care_ins_R2','has_usc_R2']]) 

 

result = ols_model.fit() 

print('*** Model of Y2 spend on original scale ***','\n',result.summary(),'\n') 

result_ln = ols_ln_model.fit() 

print('*** Model of log-transformed Y2 spend ***','\n',result_ln.summary(),'\n') 

 

The table below shows the output of the model of log-transformed 2016 medical expenditures. 

*** Model of log-transformed Y2 spend ***  

                             OLS Regression Results                             

============================================================================== 

Dep. Variable:            ln_TOTEXPY2   R-squared:                       0.183 

Model:                            OLS   Adj. R-squared:                  0.182 

Method:                 Least Squares   F-statistic:                     459.7 

Date:                Sun, 19 Jan 2020   Prob (F-statistic):               0.00 

Time:                        14:14:32   Log-Likelihood:                -35245. 

No. Observations:               14422   AIC:                         7.051e+04 

Df Residuals:                   14414   BIC:                         7.057e+04 

Df Model:                           7                                          

Covariance Type:            nonrobust                                          

=================================================================================== 

                      coef    std err          t      P>|t|      [0.025      0.975] 

----------------------------------------------------------------------------------- 

intercept           3.6548      0.073     49.981      0.000       3.511       3.798 

_RTHLTH2            0.2702      0.030      8.959      0.000       0.211       0.329 

_MNHLTH2            0.0697      0.030      2.305      0.021       0.010       0.129 

_TOTEXPY1_10k       0.4598      0.018     25.049      0.000       0.424       0.496 

_AGEY1X             0.0302      0.001     27.909      0.000       0.028       0.032 

_FAMINCY1_10k       0.0335      0.004      8.541      0.000       0.026       0.041 

mgd_care_ins_R2    -0.0615      0.047     -1.298      0.194      -0.154       0.031 

has_usc_R2          0.6611      0.050     13.106      0.000       0.562       0.760 
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============================================================================== 

Omnibus:                     2041.786   Durbin-Watson:                   1.672 

Prob(Omnibus):                  0.000   Jarque-Bera (JB):             3018.405 

Skew:                          -1.066   Prob(JB):                         0.00 

Kurtosis:                       3.690   Cond. No.                         146. 

============================================================================== 

Most of the coefficients are in the direction that one would intuitively expect: Older individuals and ones 

who were less healthy in 2015, as indicated by lower self-rated health and higher 2015 medical 

expenditures, had greater medical expenditures in 2016. (Note that the self-rated health measures were 

coded as 1 = “excellent” to 5 = “poor”.) Although not statistically significant at the conventional 0.05 

level, it is also intuitive that the sign of having a managed care insurance plan in 2015 is negative. 

However, surprisingly, having a usual healthcare provider in 2015 was associated with greater total 

medical expenditures in 2016 – the opposite of the direction of association that one would expect. 

SAS 

In SAS, first dataset df2e is created, with log-transformed 2016 medical expenditures. Then regression 

models are created using SAS PROC REG. 

data df2e; 

set df2d; 

ln_TOTEXPY2 = log(TOTEXPY2+1); 

run; 

 

 

ods rtf file='C:\projects\SAS_python_compare\spend_regression.rtf'; 

proc reg data=df2e; 

model TOTEXPY2 =  _RTHLTH2 _MNHLTH2 _TOTEXPY1_10k _AGEY1X _FAMINCY1_10k 

mgd_care_ins_R2 has_usc_R2 / vif; 

run; 

quit; 

 

proc reg data=df2e; 

model ln_TOTEXPY2 =  _RTHLTH2 _MNHLTH2 _TOTEXPY1_10k _AGEY1X _FAMINCY1_10k 

mgd_care_ins_R2 has_usc_R2 / vif; 

run; 

quit; 

ods rtf close; 

 

Below shows basic output of the SAS model of log-transformed 2016 expenditures. The coefficients, 

standard errors, t-tests and R-squared values are exactly the same as in Python. 

Root MSE 2.78754 R-Square 0.1825 

Dependent 

Mean 

6.09194 Adj R-Sq 0.1821 

Coeff Var 45.75794   
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Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value 

Pr > |t

| 

Variance 

Inflation 

Intercept 1 3.65483 0.07312 49.98 <.0001 0 

_RTHLTH2 1 0.27019 0.03016 8.96 <.0001 1.98025 

_MNHLTH2 1 0.06967 0.03023 2.30 0.0212 1.76616 

_TOTEXPY1_10k 1 0.45985 0.01836 25.05 <.0001 1.10259 

_AGEY1X 1 0.03018 0.00108 27.91 <.0001 1.22746 

_FAMINCY1_10k 1 0.03349 0.00392 8.54 <.0001 1.07288 

mgd_care_ins_R2 1 -0.06148 0.04737 -1.30 0.1944 1.02742 

has_usc_R2 1 0.66115 0.05045 13.11 <.0001 1.02566 

 

Discussion 

The objective of this paper was to compare Python and SAS in an advanced analytics case study. 

The case study showed that Python and SAS are similar in several respects: 

1. Both are relatively easy to use – fairly advanced analytics can be conducted after writing a few 

dozen to a couple hundred lines of code. 

2. Both are roughly close to the English language, thus fairly interpretable when reading the code. 

3. Both are good at dealing with structured tabular data – importing, subsetting or “slicing,” 

defining and transforming variables, and joining tables can all be done fairly easily. 

4. Both exhibited good capabilities for regression modeling and yielded the same statistical 

estimates. 

5. Both are good at looping through lists of variables and executing operations on each variable 

within a list. 

6. Both have simple and attractive plotting capabilities (in the past, this was to not so much the 

case for SAS, but SAS’s capabilities and ease of use for plotting have increased since the 

introduction of PROC SGPLOT). 

7. The Jupyter Notebook interface, which was used for the Python analyses described in this paper, 

has a similar look-and-feel to the programming window interface of SAS Enterprise Guide. 

8. Both Python and SAS gave informative error messages, while both gave warning messages that 

can be ambiguous (this may just be the nature of warning messages). 

Despite the many similarities between Python and SAS, some differences are also apparent: 

1. In some cases the Python syntax seemed a little more “wordy” with more typing than SAS, while 

in other cases the SAS syntax seemed more wordy – this seems to be situation-specific. 

2. Python was excellent at flexibly imputing missing data (e.g., median, mode); to do the same 

operations in SAS would likely be more complicated. 



25 
 

3. Python has excellent capabilities for producing annotated output, mixing output tables with 

descriptive language using print statements. SAS’s capabilities for this are a bit more clunky, for 

example, using title statements for PROCS and writing to the log, neither of which seems as nice 

as Python’s capabilities in this aspect. 

4. Some of the code seemed to run a bit slower in Python than in SAS, although the difference was 

not drastic and may be situation-specific. 

5. SAS’s regression modeling procedures have excellent default output; the same can be produced 

from Python/statsmodels, but seems to require more coding. 

General comments 

There are advantages and disadvantages to both Python and SAS. Python, as open source code, is free of 

charge. Python also has a large and growing user community. New analytic capabilities may be available 

earlier in Python. SAS is commercial software. It has been around for a long time and is considered to be 

very accurate and reliable, including by the U.S. Federal Government. CMS still publishes models and 

data in SAS. Anecdotally, based on a recent conversation with an analyst who does a lot of FDA work, 

although FDA does not require submissions to be in SAS, FDA staff will often check results using SAS, 

given that SAS has been used for a long time for FDA submissions and is considered very credible. 

Although SAS is not cheap, most organizations can afford some PC SAS 9.4 licenses at a minimum. 

The goal of this case study was to compare Python and SAS in a relatively realistic advanced analytics 

example within the healthcare context. Some analyses were illustrated, but many more analyses could 

be done. For example, to look at the association between having a usual healthcare provider in 2015 

and medical expenditures in 2016, it could be argued that regression analysis is neither optimal nor 

sufficient and other techniques may be needed, for example propensity matching, additional statistical 

sensitivity analyses, and/or instrumental variable approaches. The results from the analysis were 

interesting and somewhat surprising (counter to the initial hypotheses), but more analyses would need 

to be done before drawing more definitive conclusions about the issues explored in the case study. 

The ideal for analytics might be to use both Python and SAS, whichever works better and is more 

convenient in a given analytic situation. To make it easier to use the two together and mix and match, it 

would be great if SAS had a “PROC PYTHON” similar to “PROC SQL”. It is unknown whether SAS has any 

thoughts of doing something like this. However, the SAS Institute seems to be very open to having users 

mix and match programming languages (SAS’s native language, R, Python, and SQL) and SAS’s new 

platform, SAS Viya, is designed to facilitate this. 

One bottom line conclusion needs to be stated: Given that Python’s capabilities seemed similar to SAS, 

and Python is free, it would be difficult for most users to justify the expense of SAS, unless it was paid 

for by their employer. 

 


