
1

Copyright © 2010, SAS Institute Inc. All rights reserved.

Macro Basics for New SAS Users

Michigan SAS User Group
By: Cynthia Zender

2
2

Today's Agenda
 Understand SAS Macro Facility

 Use macro variables for text substitution

 Use macro functions to alter text

 Use macro programs to generate code

 Show "bonus" material on interaction with DATA step
and SQL

1

2

2

3

What Is "Macro" Anyway?
From: Dictionary.com

4

What Is "Macro" Anyway?
From: Dictionary.com, #5 comes closest to the essence of
the SAS Macro Facility

3

4

3

5

Assembler Macro Instructions
Macro instructions were processed by a macro compiler.
The end result was one or more assembly language
instructions that comprised the final code used to
accomplish a task or operation.

This concept still holds true for the macro facility. It works
by:

• abbreviation

• substitution and

• expansion (also known as code generation).

6

SAS Macro Facility
1) You write your SAS programs with "abbreviations"

(macro programs, macro functions or macro variables)
in your code

2) The macro processor performs substitution and code
expansion, based on your instructions.

3) Your final code, without any abbreviations, is sent to be
executed, after all the substitution and expansion is
finished.

5

6

4

7

SAS Macro Facility
The SAS macro language is how you communicate with
the SAS macro processor.

Every time SAS code is submitted, the code is scanned
for macro abbreviations that the macro processor
expands, using find-and-replace, and generates SAS
code, which is the final code that is compiled and
executed..

Ed Executive Tillie Typist Final Document

8

Major Components of Macro Facility
1) Macro language

2) Macro processor

Special abbreviations in your code trigger the macro
processor to do something.

The special abbreviations are the & and % symbols,
which are called macro triggers.

7

8

5

9

Macro Variables, Programs and Functions
(Oh My!)
The & followed by a name (&macvar) is called a macro
variable. The &macvar reference causes the macro
processor do the equivalent of find-and-replace.

The % followed by a name (%macname) can call a
predefined macro (either a macro program, a macro
function, or a macro statement).

The macro functions or macro programs instruct the
macro processor to perform a more elaborate find-and-
replace with more code expansion and code generation
than you can get with simple macro variable references.

10

Working with Find and Replace

The ~ in # stays ^ on the @.

The rain in Spain stays mainly on the plain.

9

10

6

11

Working with Find and Replace
Using Find and Replace in Notepad:

12

Flexible Text Substitution
The ~ in # stays ^ on the @.
The rain in Spain stays mainly on the plain.

The mess in my house stays mostly on the floor.

The Cat in the Hat stays silly on the pages.

to the rescue!

11

12

7

13

Text Substitution with Macro Variables
The &what in &place stays &how on the &where.

The rain in Spain stays mainly on the plain.

The mess in my house stays mostly on the floor.

The Cat in the Hat stays silly on the pages.

14

Using Macro Variables in a Program
Submit a simple %PUT statement using these macro
variables:

%PUT is a SAS Macro statement that writes text to the SAS log.

1

2

3

13

14

8

15

Behind the Scenes
1) The SAS macro processor scanned the %PUT

statement text and tried to do substitution,.

2) The macro processor looked for values for the macro
variables, but didn't find them. * So, the macro
processor didn't know the proper values to substitute
for &WHAT, &PLACE, &HOW, and &WHERE. The
WARNING message is issued.

3) The %PUT statement wrote the unresolved text string
into the SAS log.

* If the macro processor can find the values for the macro
variables the results would be different.

16

Using a Different Macro Variable
With a different macro variable:

%put The date is: &sysdate9;

&SYSDATE9 is an "automatic" macro variable created by SAS
when a SAS session starts.

15

16

9

17

Where Are Macro Variables Stored?
SAS macro variables "live" in a memory table called the
Global Symbol Table. To see the list of all the global
macro variables:

%PUT _AUTOMATIC_;

Global
Symbol
Table

18

Creating Macro Variables
Use the %LET statement to create macro variables:

• macvar is the name of the macro variable that you
want to create

• value is the value you want to have entered in the
Global Symbol Table.

%LET macvar = value;

17

18

10

19

Revised Program
** Use %LET to create macro variables.;
%let what = rain;
%let place = Spain;
%let how = mainly;
%let where = plain;
%put The &what in &place stays &how on the &where.;

20

Revised Program
** Use %LET to create macro variables.;
%let what = rain;
%let place = Spain;
%let how = mainly;
%let where = plain;
%put The &what in &place stays &how on the &where.;

19

20

11

21

Revised Program
** Use %LET to create macro variables.;
%let what = rain;
%let place = Spain;
%let how = mainly;
%let where = plain;
%put The &what in &place stays &how on the &where.;

???

22

Dots are Delimiters
A dot (.) or period delimits the end of a macro variable, so
that two macro variables can be concatenated together.

21

22

12

23

Double Down Dots
Two dots (..) or periods ensure that you will have a dot in
the resolved text.

24

Where to Put Punctuation
It is better to add punctuation where you USE the macro
variable instead of where you DEFINE the macro variable.

23

24

13

25

Yawn!
Show me more!

26

Starting Program
ods html file='c:\temp\report.html'

style=sasweb;
proc print data=sashelp.class(obs=5);
title "SASHELP.CLASS: Obs=5";

run;

ods select attributes variables sortedby;
proc contents data=sashelp.class;
title "Documentation for: SASHELP.CLASS";

run;
ods html close;

25

26

14

27

Partial Results

28

Macro-ize the Code
To "macro-ize" the code means to select code snippets
that are good candidates for "find and replace" by the
macro processor.

ods html file='c:\temp\report.html' style=sasweb;

proc print data=sashelp.class(obs=5);
title "SASHELP.CLASS: Obs=5";

run;

ods select attributes variables sortedby;
proc contents data=sashelp.class;

title "Documentation for: SASHELP.CLASS";
run;

ods html close;

27

28

15

29

Insert Macro Variables in the Code
Of course, you have to use the same macro variable
names throughout the code for substitution and resolution
to work correctly.

ods html file='c:\temp\report.html' style=sasweb;

proc print data=&lib..&data(obs=&numobs);
title "&lib..&data: Obs=&numobs";

run;

ods select attributes variables sortedby;
proc contents data=&lib..&data;

title "Documentation for: &lib..&data";
run;

ods html close;

30

Use %LET To Assign Values
Assign the values BEFORE
you run your code!

29

30

16

31

Partial
Results

Note the titles
are in
lowercase:

32

How the Text Was Resolved
Notice that the string 'sashelp.class' was resolved and
inserted just as it was typed (in lower case).

The macro processor will not alter the text that is
assigned with a %LET statement. If the values need to be
changed inside the macro processor before the replaced
text is sent to the compiler, use a macro function or
%SYSFUNC.

31

32

17

33

Changing Macro Variable Values
Use macro functions to change macro variable values.

If there is not a macro function to do what you need, you
can use %SYSFUNC to call a DATA step function (like
PROPCASE).

34

Changed Results

33

34

18

35

Danger, Will Robinson, Danger!
Macro variables will not resolve inside single quotes.

Use double
quotes

36

Any Other "Doubles" to Worry About?
Sometimes, you may want to use multiple ampersands for
the indirect reference to macro variables.

What?!?

&&muppet&num?

35

36

19

37

Tracking Resolution with Symbolgen

38

Forward Scan Rule and Rescan Rule

&&muppet&num

&muppet1

&muppet1

Kermit
%put I like Muppet&num who is &&muppet&num.;

becomes

I like Muppet1 who is Kermit

GLOBAL MUPPET1 KERMIT
GLOBAL MUPPET2 ELMOrescan

forward scan

forward scan and rescan until no more triggers

37

38

20

39

Do Macro Variables Work in Enterprise Guide?
Absolutely!

40

Properties and Prompt Manager
Click Properties to define prompts (a.k.a macro variables)

39

40

21

41

Properties and Prompt Manager
Click Properties to define prompts (a.k.a macro variables)

42

Add the Macro Variables as Prompts

41

42

22

43

Run the Program

The prompting framework creates a dialogue box
for user input at run time. User selects SHOES as
the SASHELP data set.

44

Partial Results

43

44

23

45

Wow! Pretty Cool!
What else can I do with the SAS macro facility?

46

Beyond Find and Replace
There's more to SAS macro than find and replace or the
prompting framework.

What if you could make a package of your code and then
invoke the package over and over again with different
values for the macro variables?

Different
Macro parameter
values in

Different
Results
Out

Different
Macro parameter
values in

Different
Results
Out

45

46

24

47

Some Possibilities
What if you want to allow users to select a different library
and data set for the program that's been macro-ized?

And you also want them to have the ability to choose to get
the PROC PRINT output by itself, the PROC CONTENTS
output by itself, or both outputs?

And if they ask for a particular data set (SASHELP.CLASS),
you want to assign a value of 19 to &NUMOBS.

Or, you are not ready to let them select the number of
observations yet, so you want to put the parameter in the
macro program, but for the short term, override whatever
they select to 5 as the number.

48

IF and DO
The IF and DO statements belong in the SAS
programming language interface (DATA step program).

To perform conditional processing that performs different
text substitution, you need to use %IF and %DO.

%if &lib = sashelp and &data = class %then
%let numobs = 19;

%else %let numobs = 5;

47

48

25

49

IF and DO vs %IF and %DO
The IF and DO statements belong in the SAS
programming language interface (DATA step program).

To use conditional processing with macro text
substitution, you need to use %IF and %DO.

%if &lib = sashelp and &data = class %then
%let numobs = 19;

%else %let numobs = 5;

ods html file='c:\temp\report.html'
style=sasweb;

. . . same code . . .
ods html close;

50

Not Valid in Open Code

What happens in macro stays in macro!!!
(until 9.4M5 then you can use simple %IF/%DO/%END in open code)

49

50

26

51

Macro Program Definition
You are allowed to use macro variable references and
some macro functions in open code, as you've seen.

For more complex find-and-replace scenarios, the macro
processor wants to have a neat package of everything
you want it to type for you.

This package is called a macro program definition, and
your macro language statements (such as %IF or %DO)
belong inside this special package of statements.

52

Defining a Macro Program
The whole macro package or program definition is
enclosed within %MACRO and %MEND statements. It is
a good practice, although it is not required, to show the
name of the macro program (DOC_DATA) in both of
these statements.

%options mcompilenote=ALL;
%macro doc_data(lib=sashelp, data=class,

numobs=, type=BOTH);

%mend doc_data;

Your code here. . .

51

52

27

53

Using Keyword Parameters
Including the macro variables in the macro program
definition makes the macro variables become macro
parameters, in this case, keyword parameters. Using
keyword parameters allows you to set defaults for your
macro variables.

%options mcompilenote=ALL;
%macro doc_data(lib=sashelp, data=class,

numobs=, type=BOTH);

%mend doc_data;

Your code here. . .

54

The Entire Macro Definition
options mcompilenote=ALL;
%macro doc_data(lib=sashelp, data=class,

numobs=, type=BOTH);

%if &lib = sashelp and &data = class %then
%let numobs = 19;

%else %let numobs = 5;

ods html file="c:\temp\report_&data.&type..html"

style=sasweb;

. . . continued . . .

53

54

28

55

The Entire Macro Definition
%if &type = P or &type = BOTH %then %do;

proc print data=&lib..&data(obs=&numobs);
run;

%end;
%if &type = C or &type=BOTH %then %do;

ods select attributes variables sortedby;
proc contents data=&lib..&data;
run;

%end;
ods html close;
%mend doc_data;

56

Successful Macro Compile Phase
The MCOMPILENOTE=ALL option puts a note in the log
about macro compilation.

The session-compiled macro program is stored in a SAS
catalog called WORK.SASMACR

55

56

29

57

Calling or Invoking the Macro Program
How do you make the macro processor do something with
the package or macro definition? To call or invoke the
macro program, use the percent sign again, but with the
macro program name:
%DOC_DATA(. . .specify macro variable values . . .)

When this call to the %DOC_DATA macro program is
submitted, the % is a macro trigger that causes the macro
processor to spring into action, and . . .

58

Behind the Scenes
1) The macro processor will retrieve the %DOC_DATA
macro program from the WORK.SASMACR catalog, and,

2) start typing code, based on any conditions, and

3) where there is a reference to a macro variable, the macro
processor will do find-and-replace before it types the code.

4) When the macro processor is done, the typed code goes
to the SAS compiler and then to be executed.

No & or % macro triggers remain in the code after
the macro processor has finished code generation
and resolution.

57

58

30

59

Invoke the Macro Program Multiple Times
If the macro parameter was defined with a default, the
default can be overridden when the macro program is
invoked. Or, the default value can be used for some, all or
none of the macro parameters.

%doc_data(data=shoes,numobs=10,type=P)
%doc_data(type=P)
%doc_data(data=cars,numobs=7,type=C)
%doc_data(data=orsales,numobs=25)
%doc_data()

When you invoke a macro program, you do
not {usually} need a semi-colon (;) at the end
of the invocation.

Use all the defaults

60

What Output Files Are Created
Some of the keyword parameters were used for the FILE=
option in the ODS statement.

Macro Program
Invocation Creates in C:\temp

%doc_data(data=shoes,
numobs=10,type=P)

report_shoesP.html

%doc_data(type=P) report_classP.html

%doc_data(data=cars,
numobs=7,type=C)

report_carsC.html

%doc_data(data=orsales,
numobs=25)

report_orsalesBOTH.html

file="c:\temp\report_&data.&type..html";

59

60

31

61

Only PROC PRINT with Type=P
%doc_data(data=shoes, numobs=10,type=P)

Note how the value for &NUMOBS was correctly changed
to 5 based on the %IF condition.

62

Only PROC PRINT for SASHELP.CLASS
%doc_data(type=P)

Note that the
&NUMOBS value was
correctly changed to
19 for the
SASHELP.CLASS data
set.

61

62

32

63

PROC CONTENTS for SASHELP.CARS
%doc_data(data=cars,numobs=7,type=C)

Note the PROC
CONTENTS was
generated for the
SASHELP.CARS
data set.

(&NUMOBS was
specified but not
used.)

64

Both Reports for SASHELP.ORSALES
%doc_data(data=orsales, numobs=25)

63

64

33

65

Debugging Tips
»To avoid debugging frustration, always start

with a working SAS program!

Use the macro diagnostic options:
options mcompilenote=all mprint mlogic symbolgen;
%doc_data(data=orsales,numobs=25)

66

Write Once, Run Many Times
Once the macro program definition has been written and
stored in a macro catalog, you can call it many times
(especially if you
store it in an
"autocall" macro
catalog).

65

66

34

67

Conclusion
The truth is that there's a lot more to learn about the
macro facility and even cooler stuff to learn.

Start slowly, build your confidence, take our excellent
SAS macro classes, read some user group papers and
experiment.

Remember, "what happens in macro, stays in macro" –
the SAS compiler never sees those & or % symbols
unless you want it to!

68

Your Turn

Questions

67

68

35

69

About the Author

Authors

Company

Telephone

Comments & E-Mail

Cynthia Zender

SAS Institute Inc.

(919) 531-9012 (CST)

Cynthia.Zender@sas.com

70

Bonus Material: Michigan User Group
The beauty of the SAS Macro Facility becomes evident
when you generate data-driven code based on decisions
that you make about the data. There are two ways to
interface with the Macro Facility:

• DATA step interface

• SQL INTO interface

You can use both of these interfaces to help you write
data-driven macro programs.

69

70

36

71

Start with a Working SAS Program
These two programs separate SASHELP.CLASS based
on the values of AGE or SEX:

Essentially, they are the
same program with just a
few differences.

data dsn_11 dsn_12 dsn_13
dsn_14 dsn_15 dsn_16 ;

set sashelp.class;
select(age);

when(11) output dsn_11;
when(12) output dsn_12;
when(13) output dsn_13;
when(14) output dsn_14;
when(15) output dsn_15;
when(16) output dsn_16;
otherwise;

end;
run;

data dsn_F dsn_M ;
set sashelp.class;
select(sex);
when("F") output dsn_F;
when("M") output dsn_M;
otherwise;

end;
run;

72

The Plan
Write one SAS Macro program to generate the SAS code
automatically.

1. Generate a list of Macro variables – one variable
for each value of AGE or of SEX

2. Use a %DO loop inside the Macro program to
generate the DATA step code automatically from
the list generated in #1.

71

72

37

73

Compare Both Methods
DATA Step Method

proc sort data=sashelp.class(keep=age) out=values nodupkey;
by age;

run;

data _null_;
set values end=last;
call symputx('d_ag'||left(put(_n_,2.0)), put(age,2.0));
if last then do;
call symputx('count',_n_);

end;
run;

%put Method A) Separate Macro Vars &d_ag1 &d_ag2 &d_ag3
&d_ag4 &d_ag5 &d_ag6;

74

Compare Both Methods
SQL Method

proc sql noprint ;
select distinct(age) into :s_ag1-:s_ag6

from sashelp.class;
quit;

%put Method B) Separate Macro Vars &s_ag1 &s_ag2 &s_ag3
&s_ag4 &s_ag5 &s_ag6;

73

74

38

75

Macro Program Definition
Here’s the full macro program definition:

76

Invoking the Macro Program
To invoke the macro program, we use the macro name
preceded with a %:

%sep(param=value, param=value)

options mprint;

%sep(data=sashelp.class, var=age)
%sep(data=sashelp.class, var=sex)

75

76

39

77

Generating Code for AGE Variable
Partial SAS Log for AGE Variable:

Note how the values for the AGE value were not quoted
based on the condition in the %IF statement.

78

Generating Code for SEX Variable
Partial SAS Log for SEX Variable:

Note how the values for the SEX variable are quoted
correctly based on the %IF logic.

77

78

40

79

Final Thoughts
The SAS Macro Facility is extremely powerful. But it only
types code for you! Therefore, it is essential to start with a
working SAS program or programs before you write any
macro code.

Classes:
SAS Macro Language 1: Essentials
SAS Macro Language 2: Advanced Techniques

Books:
Art Carpenter
Michele Burlew

Papers:
http://www.lexjansen.com (to search for papers on Macro
topics)

80

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration. Other brand and
product names are trademarks of their respective companies.
Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights
reserved. Updated: 31May2022.

79

80

