Macro Basics for New SAS Users

Michigan SAS User Group
By: Cynthia Zender

GSas | ¥,

Today's Agenda

Understand SAS Macro Facility

Use macro variables for text substitution
Use macro functions to alter text

Use macro programs to generate code

Show "bonus" material on interaction with DATA step
and SQL

§sas | B
What Is "Macro” Anyway?

From: Dictionary.com

mac-ro E]J} [mak-roh] chow IPA adjective, noun, plural
mac-ros.

adjective

1. very large in scale, scope, or capability.

2. of or pertaining to macroeconomics.

noun

3. anything very large in scale, scope, or capability.

4. Photography . a macro lens.

5. Also called macroinstruction. Computers. an instruction that
represents a sequence of instructions in abbreviated form.

6. Macroeconomics.

§sas | B
What Is "Macro” Anyway?

From: Dictionary.com, #5 comes closest to the essence of
the SAS Macro Facility

mac-ro =) [mak-roh] show 174 adjective, noun, plural
mac-ros.

adjective

1. very large in scale, scope, or capability.

noun

3. anything very large in scale, scope, or capability.

‘5. Also called macroinstruction. Computers. an instruction that
represents a sequence of instructions in abbreviated form.

6sas | Hs.

Assembler Macro Instructions

Macro instructions were processed by a macro compiler.
The end result was one or more assembly language
instructions that comprised the final code used to
accomplish a task or operation.

This concept still holds true for the macro facility. It works
by:

» abbreviation

 substitution and

« expansion (also known as code generation).

6sas | Hs.

SAS Macro Facility

1) You write your SAS programs with "abbreviations"
(macro programs, macro functions or macro variables)
in your code

2) The macro processor performs substitution and code
expansion, based on your instructions.

3) Your final code, without any abbreviations, is sent to be

executed, after all the substitution and expansion is
finished.

SAS Macro Facility

The SAS macro language is how you communicate with
the SAS macro processor.

Every time SAS code is submitted, the code is scanned
for macro abbreviations that the macro processor
expands, using find-and-replace, and generates SAS
code, which is the final code that is compiled and
executed..

(e"o{\

Ed Executive Tillie Typist

Final Document

6Sas | Hs.
Major Components of Macro Facility

1) Macro language
2) Macro processor

Special abbreviations in your code trigger the macro
processor to do something.

The special abbreviations are the & and % symbols,
which are called macro triggers.

6sas | Hs.

Macro Variables, Programs and Functions
(Oh My!)

The & followed by a name (&macvar) is called a macro
variable. The &macvar reference causes the macro
processor do the equivalent of find-and-replace.

The % followed by a name (%macname) can call a
predefined macro (either a macro program, a macro
function, or a macro statement).

The macro functions or macro programs instruct the

macro processor to perform a more elaborate find-and-
replace with more code expansion and code generation
than you can get with simple macro variable references.

10

@

Working with Find and Replace
The ~ in # stays 4 on the @.

6sas | Hs.

The rain in Spain stays mainly on the plain.

10

6sas | Hs.

Working with Find and Replace
Using Find and Replace in Notepad:

The ~ in # stays » on the
/ % y \

MFind anc Repiace | s
Reglace

Find what: |~

Replace with: raun

/ /

The rain in Spain stays mainly on the plain.

1"

11

12

6sas | Hs.

Flexible Text Substitution

The ~ in # stays ”* on the @.

The rain in Spain stays mainly on the plain.

The mess in my house stays mostly on the floor.
The Cat in the Hat stays silly on the pages.

12

\ SSEiS]:Jm
Text Substitution with Macro Variables
The &what in &place stays &how on the &where.

The rain in Spain stays mainly on the plain.
The mess in my house stays mostly on the floor.
The Cat in the Hat stays silly on the pages.

13

13

6sas | Hs.

Using Macro Variables in a Program

Submit a simple %PUT statement using these macro
variables:

398 7Zput The &what in &place stays &how on the dwhere.; |0
ARNING: Apparent symbolic reference WHAT not resolved.
ARNING: Apparent symbolic reference PLACE not resolved.
ARN ING: Apparent symbolic reference HOW not resolved.

ARNING: Apparent symbolic reference MHERE not resolved.
The dwhat in &place stays &how on the &where.e -

%PUT is a SAS Macro statement that writes text to the SAS log.

14

14

Behind the Scenes

1) The SAS macro processor scanned the %PUT
statement text and tried to do substitution,.

2) The macro processor looked for values for the macro
variables, but didn't find them. * So, the macro
processor didn't know the proper values to substitute
for &WHAT, &PLACE, &HOW, and &WHERE. The
WARNING message is issued.

3) The %PUT statement wrote the unresolved text string
into the SAS log.

* If the macro processor can find the values for the macro

variables the results would be different.

15

15

Using a Different Macro Variable

With a different macro variable:

6sas | Hs.

$put The date is: &sysdate9;

144 ﬁput The date is: &sysdated;
The date is: 23DEC2012

&SYSDATEDY is an "automatic" macro variable created by SAS

when a SAS session starts.

16

16

17

Where Are Macro Variables St;ed?

SAS macro variables "live" in a memory table called the
Global Symbol Table. To see the list of all the global
macro variables:

$PUT _AUTOMATIC ;

745 ** Write the automatic global macro variables to the Log;
746 ZPUT _AUTOMATIC_;
AUTOMATIC AFDSID O
AUTOMAT IC AFDSNAME
AUTOMATIC AFLIB

AUTOMATIC AFSTRI1

AUTOMATIC AFSTR2

AUTOMAT IC FSPBDV

AUTOMATIC SYSADDBITS 64
AUTOMAT IC SYSBUFFR

AUTOMATIC SYSCC 3000
AUTOMATIC SYSCHARMIDTH 1
AUTOMATIC SYSCMD

AUTOMATIC SYSDATE 23DEC12
AUTOMATIC SYSDATES 23DEC2012
AUTOMATIC SYSDAY Sunday

17

18

Creating Macro Variables

Use the %LET statement to create macro variables:

$LET macvar = value;

* macvar is the name of the macro variable that you
want to create

* value is the value you want to have entered in the
Global Symbol Table.

18

Gsas | B

Revised Program

** Use SLET to create macro variables.;

%let what = rain;

tlet place = Spain;

slet how = mainly;

%let where = plain;

tput The &what in &place stays &how on the &where.;

19

19

Gsas | B

Revised Program

** Use SLET to create macro variables.;

%let what = rain;

%let place = Spain;

slet how = mainly;

%let where = plain;

tput The &what in &place stays &how on the &where.;

754

¥Lh #*% U=ze XLET to create macro variables.;

f56 Xlet what = rain;

f57 Xlet place = Spain;

¥h8 Xlet how = mainly;

f59 Xlet where = plain;

760

761 ¥put The &what in &place stavs Zhow on the Zwhere.;
The rain in Spain stays mainly on the plain

20

20

10

Revised Program

** Use SLET to create macro variables.;

%let what = rain;

tlet place = Spain;

slet how = mainly;

%let where = plain;

tput The &what in &place stays &how on the &where.;

754

¥Lh #*% U=ze XLET to create macro variables.;
f56 Xlet what = rain;

f57 Xlet place = Spain;

¥h8 Xlet how = mainly;

f59 Xlet where = plain;

760

¥61 ¥put The &what in &place stavs Zhow on the Zwhere.;
The rain in Spain stays mainly on the plain e, |

21

21

Dots are Delimiters

A dot (.) or period delimits the end of a macro variable, so
that two macro variables can be concatenated together.

f67¥ Xlet front = c;

f68 ¥Xlet back = andy;

763 ZAput ====> &front.&back;
====3 candy 1

.

ffl Xlet front=d;

ffr?2 Aput ====» &front.&back;
====3 dandy 1

22

22

11

I
Double Down Dots
Two dots (..) or periods ensure that you will have a dot in
the resolved text.
15. %let front = The dataset iz SASHELP;
16 Zlet back = CLASS;
17
18
19 ¥%%¥ Mo dots;
20 Zput &frontiback;
The dataset is SASHELPCLASS
Z1
22
23 ¥*%¥ One dot;
24 Zput &front.&back;
The dataset is SASHELPCLASS
25
26
27 ¥*¥¥Two dots;
28 Zput &front. .&back;
The dataset is EﬁEHELPiELﬁEE
23 1
23
-

Where to Put Punctuation

It is better to add punctuation where you USE the macro
variable instead of where you DEFINE the macro variable.

1026 Xlet what = mess;

1027 Xlet place = my house;
1028 Xlet how = mostly;
1029 Xlet where = floor;

1034 Xlet what = Cat;

1035 Xlet place = the Hat;
1036 Zlet how = silly;
1037 Xlet where = pages*;

1038

1030
1031 ZXZput The &what in &place stavs &£how on the &where..;
The mess in my house stays mostly on the floor. II
1032
1033

1039 ZXput The &what in &place stayvs &£how on the &where;
The Cat in the Hat stawys =silly on the pages.

24

24

12

25

Yawn!

Show me more!

25

Starting Program

ods html file='c:\temp\report.html'

style=sasweb;
proc print data=sashelp.class (obs=5) ;
title "SASHELP.CLASS: Obs=5";

run,

ods select attributes variables sortedby;
proc contents data=sashelp.class;

title "Documentation for: SASHELP.CLASS";

run,

ods html close;

26

26

13

6sas | Hs.

Partial Results

SASHELP.CLASS: Obs=5

Alice F

Barbara

Carol

Jane

Janet

Documentation for: SASHELP.CLASS

Data Set Name SASHELP CLASS

-
©

Observations

Member Type DATA m %
Created Sunday, Movember 11, 2012 09:35:41 AM 40
Sunday, November 11, 2012 09:35:41 AM 0
Protection MO
Data Set Type Sorted YES
I
DEIEREEEENIEIGLE WINDOWS_64 _
27
27

6Sas | Hs.
Macro-ize the Code

To "macro-ize" the code means to select code snippets
that are good candidates for "find and replace" by the
macro processor.

bds html file='c:\temp\report.html' style=sasweb;
proc print data=sashelp.class (obs=5) ;
title "SASHELP.CLASS: Obs=5";

run,

ods select attributes variables sortedby;
proc contents data=sashelp.class;
title "Documentation for: SASHELP.CLASS";

run,
ods html close;

28

28

14

Insert Macro Variables in the Code

Of course, you have to use the same macro variable

names throughout the code for substitution and resolution

to work correctly.

proc print data=&lib. .&data (obs=&numobs) ;
title "&lib..&data: Obs=&numobs';

proc contents data=&lib. . &data;
title "Documentation for: &lib..&data";

29

29

30

Use %LET To Assign Values

4651 Xlet lib==zashelp; .

4EL? Tlet data = c.ags; _ Assign the values BEFORE
4653 Zlet numobs = 5; you run your code!

4654

4655 ods html file='c:\temp'report.html’

4656 sty le=sasweb;

HOTE: Writing HTML Body file: c:'temp'report.html

4657 proc print data=£1ib..&data(obs=&numobs);

4558 title "&£1ib..&data: Obs=&numobs™;

4659 run;

OTE : PROCEDURE
real time 0.01 seconds
cpu time 0.00 seconds

HT used (Total process time):

4660

4661 ods select attributes variables sortedby;
4662 proc contents data=&1ib. .&data;

4663 title "Documentation for: &1ib..&data™;
4664 run;

INOTE : PROCEDURE CONTENTS used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

4665 ods html close;

OTE: There wereg;Jubservatiuns read from the data set|SASHELP .CLASS

30

15

Gsas | B

Partial
Results

Note the titles
are in
lowercase:

[sashelp.class: Obs=5]

<!l Barbara F

M
F

F

lDocumentation for: sashelp.class]

Data Set Name
Member Type

Last Modified
Protection

Data Set Type

Data Representation

SASHELP.CLASS Observations 19

06/20/2013 00:29:58 10
06/20/2013 00:29:58 0
e

LR -

WINDOWS_64

us-ascii ASCII (ANSI)

31

31

Gsas | B

How the Text Was Resolved

Notice that the string 'sashelp.class' was resolved and
inserted just as it was typed (in lower case).

What Was Sent to the Macro Processor

The Resolved Text

ods html file='c:\temp\report._html’
style=szasweb;
proc print data=&lib. . &data
(obs=&numcbz) ;
title "&lib..&data: Obs=&numocbszs";
run;

ods select attributes wvariables sortedby;
proc contents data=&lib..&data;

title "Documentation for: &lib..&data";
run;
ods html close;

ods html file='c:\temp\report._ html'
style=zasweb;
proc print data=sashelp.class
(obs=5) ;
title "sashelp.class: Obs=5";
run;

ods select attributes variables sortedby;
proc contents data=sashelp.class;

title "Documentation for: sashelp.class";

run;
ods html close;

%SYSFUNC.

32

The macro processor will not alter the text that is
assigned with a %LET statement. If the values need to be
changed inside the macro processor before the replaced
text is sent to the compiler, use a macro function or

32

16

§Sas | B,
Changing Macro Variable Values

Use macro functions to change macro variable values.

1809 ZYput =====3 Xupcase(abcdefgl123 456hijkIlmn789);
=====) ABCDEFG123 456HIJKLMN789
1810 Zput =====» Zsysfunc(propcasel(every first letter will be upcase));

=====3) Every First Letter Hill Be Upcase

If there is not a macro function to do what you need, you
can use %SYSFUNC to call a DATA step function (like
PROPCASE).

33
33
§sas | B
‘title "Fupcase(&lib..&dataﬂ: Obs=&numocbs" ;
8 4
v
SASHELP.CLASS: Obs=5
"o v sx s v | weun|
- Mice F 13 565 840
b3 Barbara 13 653 080
£l Carol F 14 628 1025
[l Jane F 12 598 845
(8 Janet F 15 625 1125
Documentation for: Sashelp.Class
“Data Set Name SASHELP.CLASS Obscryations E
Member Type DATA Variables
f)
‘title "Documentation for: Fsysfunc(propcase(&lib..&data))h;
34
34

17

eese 9sas | He.
Danger, Will Robinson, Danger!

Macro variables will not resolve inside single quotes.

%upcase (&lib. . &data): Obs=&numobs};
|]

Y%upcase(&lib..&data): Obs=&numobs

Any Other "Doubles” to Worry About?

Sometimes, you may want to use multiple ampersands for
the indirect reference to macro variables.

138 #*%5) Example of indirect reference;

139 Xlet muppetl = Kermit;

140 Xlet muppet? = Elmo;

141 Xput Muppetl is Zmuppetl and Muppet? is &muppet?;
Muppetl is Kermit and Huppet? iz Elmo

142

143 Xlet num=1;

144 Zput | like Muppetfnum who is &&nuppetfnum;

I Tike Muppetl who iz Kermit

145

146 Xlet num=2;

147 Xput | also like Muppet&fnum who iz &£&muppetfnum;
I alzo 1like Muppet? who is Elmo

What?!?
&&muppet&num?

36

36

— I
Tracking Resolution with Symbolgen

29 options symbolgen;

30

31 Zlet muppetl = Kermit;

32 %let muppet? = Elmo;

33 Zput Muppetl is &muppetl and Muppet? is &muppet?;
SYMBOLGEN: Macro variable MUPPET1 resolves to Kermit
SYMBOLGEN: Macro variable MUPPETZ resolves to Elmo
Muppetl is Kermit and Muppet? is Elmo

34

35

36 %Zlet num=1;

37 “put | like Muppet&num who is &&muppet&num. ;
SYMBOLGEN: Macro variable NUM resolves to 1
STYHBOLGEN: && resolves to &.

STYHBOLGEN: Macro variable HUM resolves to 1
STHBOLGEN: HMacro variable MUPPET1 resolves to Kermit
I Tike Muppetl who is Kernmit

38

39

40 %Zlet num=2;

41 #put | also like Muppet&num who is &&muppet&num. ;
SYMBOLGEN: Macro variable NUM resolves to 2
SYMBOLGEN: && resolves to &.

SYMBOLGEN: Macro variable NUM resolves to 2
SYMBOLGEN: Macro variable MUPPETZ resolvez to Elmo

| also like Muppet? who is= Elmo

37

37

— I
Forward Scan Rule and Rescan Rule

&&muppet&nun}n
&muppet1

i
'GLOBAL MUPPET1 KERMIT !

rescan | GLOBAL MUPPET2 ELMO

&muppet1
.) forward scan and rescan until no more triggers
Kermit

%put | like Muppet&num who is &&muppet&num.;
becomes
| like Muppet1 who is Kermit

38

38

39

§sas | B
Do Macro Variables Work in Enterprise Guide?
Absolutely!

B oo [l] B et
[Save = B+ Run = 1 Stop | Selected Server: Local (Connected) » % | Analyze Program = | Export = Send
2let lib=sashelp;

%let data = class=;
%let numobs = 5;

ods html file='c:\temp\report.html'
style=sasweb;

E proe print data=&lib..&datz (cbs=&numcbs);
title "%upcase(&lib..&data): Obs=&numcbs";
run;

ods select attributes wvariasbles sortedby;
proc contents data=&lib..&data;

|

title "Decumentation for: $sysfunc|propcase (&lib..&data))";
run;

odz html close;
|

39

§Sas | .
Properties and Prompt Manager

Click Properties to define prompts (a.k.a macro variables)
& Frogrn [1] Log | 5] Rt

Save ~ I Run - [Stop | Selected Server: Local (Connected) ~ % | Analyze Program ~ | Export ~ Send To - Create - | Properties
$let lib=sashelp:

40

i Prompts

Project prompts used

SAS Name Display Name Data Type

This ftem dozs ot se any prompts that are defined in the project

oo [e
Enables you to create. edit. or delete a prompt.
More (F1). -
[ok [emcd]

40

4

Gsas | B

Properties and Prompt Manager

Click Properties to define prompts (a.k.a macro variables)

General

[

Prompts
Results
Sur
i Project prompts used:
SAS Name

Display Name

This item does not use any prompts that are defined in the project.

Data Type

_ pdd.] [Fenowe
Enables you to create, edit, or delete a prompt. -
More (F1).. -

41

42

Gsas | B

Add the Macro Variables as Prompts

]

[Save ~ I Run ~ [Stop | Selected Server: Local (Connected

Program” Log |] Resuts

= proc print data=&lib..&data(cba={

ilet lib=sashelp;
%let data = class;
%let numcbs = 5;

ods html file='c:\temp\report.html
style=sasweb;

title "%upcase(&lib..&dats):
run;

ods select attributes variables
proc contents data=&lib..adata;

title "Documentation for: %sys
run;

ods html close;

General
Resutts
Prompts
‘Summary

) - % | Analyze Program ~ | Export + Send To = Create - | [Properties

Prompts
Project prompts used
SAS Name Display Name Data Type
lib SAS Library. Text
data SAS Data St Text
numobs Number of Observations Numeric

42

21

| & Proge [2] Loa [57 Rt

§Sas | B,
Run the Program

Save ~ b Run + o Stop | Selected Server: Local (Connected) ~ % | Analyze Program = | Export = Send To + Creste - | [E] Properties

ode html file='c:\temp\report]
style=sasweb; [] Show only required items (dencted by %)

5 proc print data=ilik..&data
title "%upcase (&lib..&dat]

| General Beset aroup defauts |

run; I * SAS Library
]) [sashelp B
ods select attributes varial
B proc contents data=:lib.. * SAS Data Set
title "Documentation for: shoes|
run;

ods hitml close; * Number of Observations
5

The prompting framework creates a dialogue box
for user input at run time. User selects SHOES as
the SASHELP data set.

43

43

Gsas | B

Partial Results

Program =

(& Program [[2] Log | &) Results |

5 Refresh | Export - Send To - Publish | [E Properties

[SASHELP.SHOES: Obs=5]

tegion | Product | Subsidiary Stores Sales | Inventory | Returns
i

Ri
Africa Boot Addis Ababa 12 29,761 | $191,821 8769

Africa | Boot Algiers 21 | $21,297 | $73737 §710
Africa Boot Cairo 20 34846 $18,965
Africa Boot Johannesburg 14 | $8,365 $33,011

Africa | Boot Khartoum 24 519282 | 105,370

l Documentation for: Sashelp.Shoes I

The CONTENTS Procedure

Data Set Name SASHELP SHOES
Member Type DATA

Engine va

Created Monday, October 22, 2012 04:22:19 P e V=S BT

44

22

Wow! Pretty Cool!

What else can | do with the SAS macro facility?

45

45

Beyond Find and Replace

There's more to SAS macro than find and replace or the
prompting framework.

What if you could make a package of your code and then
invoke the package over and over again with different
values for the macro variables?

Different
Macro parameter
values in

: Different
Different Results
Macro parameter Out
values in

\
‘. | Different
Results
Out

46

46

47

Some Possibilities

What if you want to allow users to select a different library
and data set for the program that's been macro-ized?

And you also want them to have the ability to choose to get
the PROC PRINT output by itself, the PROC CONTENTS
output by itself, or both outputs?

And if they ask for a particular data set (SASHELP.CLASS),
you want to assign a value of 19 to &NUMOBS.

Or, you are not ready to let them select the number of
observations yet, so you want to put the parameter in the
macro program, but for the short term, override whatever
they select to 5 as the number.

47

48

Gsas | B

IF and DO

The IF and DO statements belong in the SAS
programming language interface (DATA step program).

To perform conditional processing that performs different
text substitution, you need to use %IF and %DO.

%if &lib = sashelp and &data = class %then
%$let numobs = 19;
%else %let numobs = 5;

48

24

IF and DO vs %IF and %DO

The IF and DO statements belong in the SAS
programming language interface (DATA step program).

To use conditional processing with macro text
substitution, you need to use %IF and %DO.

%if &lib = sashelp and &data = class %then
%$let numobs = 19;
%else %let numobs = 5;

ods html file='c:\temp\report.html'
style=sasweb;

. same code

ods html close;

49

49

Not Valid in Open Code

GBS Xlet lib==zashelp;

6BE Xlet data = class;

GEBY

688 Xif &1ib = mashelp and &data = class XZthen Xlet numobs =
RRDR: The XIF statement is not valid in open code.
689 Xelse Xlet numobs = 5;

RRDR: The XELSE statement is not wvalid in open code.
690

691 ods html file="c:\temp‘report.html’

692 style=sasweb;

OTE: Writing HTHL Body file: c:“temp'report.html

6593 proc print data=&1ib..&datal obs=&numobs];

694 title "Zupcase(&lib..&data): Obs=&numobs;
695 run;

19;

What happens in macro stays in macro!!!
(until 9.4M5 then you can use simple %IF/%DO/%END in open code)

50

50

25

51

6sas | Hs.

Macro Program Definition

You are allowed to use macro variable references and
some macro functions in open code, as you've seen.

For more complex find-and-replace scenarios, the macro
processor wants to have a neat package of everything
you want it to type for you.

This package is called a macro program definition, and
your macro language statements (such as %IF or %DO)
belong inside this special package of statements.

51

52

6sas | Hs.

Defining a Macro Program

The whole macro package or program definition is
enclosed within %MACRO and %MEND statements. It is
a good practice, although it is not required, to show the
name of the macro program (DOC_DATA) in both of
these statements.

%options mcompilenote=ALL;
$macro doc data(lib=sashelp, data=class,
numobs=, type=BOTH) ;

Your code here. . .

smend doc data;

52

26

53

Using Keyword Parameters

Including the macro variables in the macro program
definition makes the macro variables become macro
parameters, in this case, keyword parameters. Using
keyword parameters allows you to set defaults for your
macro variables.

%options mcompilenote=ALL;
$macro doc data(lib=sashelp, data=class,
numobs=, type=BOTH) ;

Your code here. . .

$mend doc data;

53

The Entire Macro Definition

options mcompilenote=ALL;
@macro doc_data(lib=sashelp, data=class,
numobs=, type=BOTH) ;

%if &lib = sashelp and &data = class %then
%let numobs = 19;
%else %$let numobs = 5;

ods html file="c:\temp\report &data.&type..html"
style=sasweb;

continued

54

54

27

§sas | B
The Entire Macro Definition

%if &type = P or &type = BOTH %then %do;
proc print data=&lib. . &data (obs=&numobs) ;
run;

%end;

%if &type = C or &type=BOTH S%then %do;
ods select attributes wvariables sortedby;
proc contents data=&lib. . &data;
run;

%end;

ods html close;

smend doc_data;

55

55
$Sas | Hs.
Successful Macro Compile Phase
The MCOMPILENOTE=ALL option puts a note in the log
about macro compilation.
93 Zmend doc_data;
HOTE: The macro DOC_DATA completed compilation without errors.
45 instructionz 1364 bytes.
94
The session-compiled macro program is stored in a SAS
catalog called WORK.SASMACR
e | e | o | st scren
DOC_DATA MACRO | 05Jan13:14:29:51 05Jan13:14:29:51
56
56

28

57

Calling or Invoking the Macro Program

How do you make the macro processor do something with
the package or macro definition? To call or invoke the
macro program, use the percent sign again, but with the
macro program name:

$DOC_DATA(. . .specify macro variable values . . .)

When this call to the %DOC_DATA macro program is
submitted, the % is a macro trigger that causes the macro
processor to spring into action, and . . .

57

58

6sas | Hs.

Behind the Scenes

1) The macro processor will retrieve the %DOC_DATA
macro program from the WORK.SASMACR catalog, and,

2) start typing code, based on any conditions, and

3) where there is a reference to a macro variable, the macro
processor will do find-and-replace before it types the code.

4) When the macro processor is done, the typed code goes
to the SAS compiler and then to be executed.

No & or % macro triggers remain in the code after

the macro processor has finished code generation
and resolution.

58

29

Invoke the Macro Program Multiple Times

If the macro parameter was defined with a default, the
default can be overridden when the macro program is
invoked. Or, the default value can be used for some, all or
none of the macro parameters.

%$doc_data (data=shoes,numobs=10, type=P)
%doc_data (type=P)

%doc_data (data=cars,numobs=7, type=C)
%doc_data (data=orsales,numobs=25)
%doc_data() < Use all the defaults

When you invoke a macro program, you do

not {usually} need a semi-colon (;) at the end
of the invocation.

59

59

What Output Files Are Created

Some of the keyword parameters were used for the FILE=
option in the ODS statement.

file="c:\temp\report &data.é&type..html";

Macro Program
Invocation Creates in C:\temp

%doc_data (data=shoes,
numobs=10, type=P)
%doc_data (type=P) report_classP.html

%doc_data (data=cars,
numobs=7, type=C)

report shoesP.html

report carsC.html

%doc_data (data=orsales,

lesBOTH.html
numobs=25) report_orsalesBO tm

60

60

30

Gsas | B

Only PROC PRINT with Type=P

%doc_data (data=shoes, numobs=10, type=P)

SASHELP.SHOES: Obs=5
Type of Requestis: P

Product | Subsidiary Stores Inventory
(= Africa Boot Addis Ababa 12 28761 §191.821 5769
"8 Africa Boat Algiers 21 | §21.297 $73737 $710
<8 Africa Boot Caira 20 54,846 518,965 5229
~ 0 Africa Boat Jahannesburg 14 | 58,365 $33.011 5483
<1 Africa Boaot Khartoum 24 | $19.282 | $105370 5700

Note how the value for &NUMOBS was correctly changed
to 5 based on the %IF condition.

61
61
9Sas | Hs.
Only PROC PRINT for SASHELP.CLASS
%doc_data (type=P)
Note that the SASHELP.CLASS: Obs=19
&NUMOBS value was Type of Request is: P
correctly changed to Name | Sex | Age | Heignt | Weight
19 for the Alice F 13 B6.5 840
SASHELP.CLASS data e (T g, ey pp—
set.
Carol F 14 2.8 1025
Jane F 12 598 845
Janet F 15 625 1125
Joyce F 11 5.3 505
Judy F 14 64.3 a0.0
Louise F 12 56.3 7o
Mary F 15 B6.5 1120
Alfred i] 14 G9.0 1125
62

62

63

6sas | Hs.

PROC CONTENTS for SASHELP.CARS

%doc_data (data=cars,numobs=7, type=C)

Note the PROC
CONTENTS was
generated for the
SASHELP.CARS
data set.

(&ANUMOBS was

specified but not
used.)

Documentation for: Sashelp.Cars
Type of Requestis: C

The CONTENTS Procedure

Data Set Name SASHELP CARS ‘Observations 428

o -

Ve

Tuesday, May 24, 2011 03:06:30 PM e G NE RS 152
Tuesday, May 24, 2011 03:06:30 PM [DEEERIENETTEY 0
o

Data Set Type

DEIEREVEEE RN WINDOWS_64

Encoding us-ascil ASCI (ANSI)

Alphabetic List of Variables and Attributes

8

N Cylinders Num
| DriveTrain Char | 5
"N EngineSize Num 8 Engine Size (L)

63

64

6sas | Hs.

Both Reports for SASHELP.ORSALES

%doc_data (data=orsales, numobs=25)

| 1999 1999Q1 | Children

’4l 1999 1999Q1 | Children

53 1999 1999Q1 | Children

LN 1999 1999Q1 | Children

L8 1999 1999Q1 | Children

Quarter | Product_Line | Product_Category | Product_Group Profit | Total_Retail_Price
Children Sports A-Team, Kids 286 498015 899090
Children Sports Bathing Suits, Kids 98 147995 2560.40
Children Sports Eclipse, Kid's Clothes 588 934885 18768.80
Children Sports Eclipse, Kid's Shoes 334 7136.80 14337.20
Children Sports Lucky Guy, Kids 303 7163.00 12996.20

SASHELP.ORSALES: Obs=5
Type of Request is: BOTH

Documentation for: Sashelp.Orsales

Type of Request is: BOTH

The CONTENTS Procedure

Member Type
Engine

Created

SASHELP.ORSALES ‘Observations 912
12

Tuesday, May 24, 2011 02:40:14 PM

=== DL
‘Observation Length 1

Nnlnénd Akenmuatinne

64

32

65

Debugging Tips

«*»To avoid debugging frustration, always start
***with a working SAS program!

Use the macro diagnostic options:

options mcompilenote=all mprint mlogic symbolgen;
%doc_data (data=orsales,numobs=25)

65

66

Write Once, Run Many Times

Once the macro program definition has been written and
stored in a macro catalog, you can call it many times

(especially if you

store it in an
"autocall" macro
catalog).

Save = b Run - [Stop | Selected Server: Local (Connected) ~ % | Analyze Program - | Export =

*% invoke macro program without recompiling;
options mprint mlogic;

%*doc data —_— ——
[] Show only required items (denoted by %)
General

% SAS Library

[sasheip

* SAS Dataset

class

The SAS Dataset to document

* Number of Obs for Proc Print

25

* Type of Report Request

[Proc Print Only

66

33

Conclusion

The truth is that there's a lot more to learn about the
macro facility and even cooler stuff to learn.

Start slowly, build your confidence, take our excellent
SAS macro classes, read some user group papers and
experiment.

Remember, "what happens in macro, stays in macro" —
the SAS compiler never sees those & or % symbols
unless you want it to!

67

67

6Sas | Hs.
Your Turn

Questions

68

68

34

6sas | Hs.

About the Author

Authors Cynthia Zender
Company SAS Institute Inc.
Telephone (919) 531-9012 (CST)

Comments & E-Mail Cynthia.Zender@sas.com

69

69

6sas | Hs.

Bonus Material: Michigan User Group

The beauty of the SAS Macro Facility becomes evident
when you generate data-driven code based on decisions
that you make about the data. There are two ways to
interface with the Macro Facility:

» DATA step interface

« SQL INTO interface

You can use both of these interfaces to help you write
data-driven macro programs.

70

70

35

Gsas | B

Start with a Working SAS Program

These two programs separate SASHELP.CLASS based
on the values of AGE or SEX:

data dsn_11 dsn_12 dsn_13
dsn_14 dsn_15 dsn_16 ;
set sashelp.class;
select(age) ;
when (11) output dsn_11;
when (12) output dsn_12;
when (13) output dsn_13;
when (14) output dsn_14;
when (15) output dsn_15;
when (16) output dsn_16;
otherwise;
end;
run;

data dsn_F dsn M ;

set sashelp.class;

select (sex) ;
when ("F") output dsn_F;
when ("M") output dsn_M;
otherwise;

end;

run;

71

Essentially, they are the
same program with just a
few differences.

71

The Plan

automatically.

72

Gsas | B

Write one SAS Macro program to generate the SAS code

1. Generate a list of Macro variables — one variable
for each value of AGE or of SEX

2. Use a %DO loop inside the Macro program to
generate the DATA step code automatically from
the list generated in #1.

72

36

e

XL §sas

Compare Both Methods
DATA Step Method

TOKNOW.

proc sort data=sashelp.class (keep=age) out=values nodupkey;
by age;
run;

data _null ;
set values end=last;
call symputx('d_ag'||left(put(_n_,2.0)), put(age,2.0));
if last then do;
call symputx('count', n);
end;
run;

%put Method A) Separate Macro Vars &d_agl &d_ag2 &d_ag3
&d_ag4 &d_ag5 &d_ag6;

1591

1592 ¥put Mcthod A) Separate Macro Vars &d agl %d_age &d_ag3 &d_ag4 &d_ag5 d_agh;
Method A) Separate Macro Vars 11 12 13 14 15

73

73

e
TOKNOW.

XXX §sas

Compare Both Methods
SQL Method

proc sql noprint ;
select distinct(age) into :s_agl-:s_ag6
from sashelp.class;
quit;

%put Method B) Separate Macro Vars &s_agl &s_ag2 &s_ag3
&s_ag4 &s_ag5 &s_agé6;

1597

1598 *put Method B) Separate Macro Vars &s ag1 %s_agZ &s_ag3 %s_agH %s_a95 &s_agh;
Method B) Separate Macro Vars 11 12 13 14 15

74

74

37

Macro Program Definition
f T)
Here’s the full macro program definition:

1601 Xmacro sep (data=, var=);
1602 proc sort data=&data(keep=&wvar) out=values nodupkey;
1603 by &var;
1604 run;
1605
1606 data _null_;
1607 set values end=last;
1608 call symputx(’mu’||left(_n_),.&var]);
1609 if last then call symputx(’count’,_n_]);
1610 run;
1611
1612 data
1613 #do i=1 %to &count;
1614 dsn_&&mus i
1615 zZend;
1616 H
1617 set &data;
1618 select(&var);
1619 “if &var = age “then Xdo;
1620 #do i=1 ¥to &count;
1621 when(&&nv&i) output dsn_&&muii;
16ELC “end;
1623 “end;
1624 “else Xdo;
16E5 #do i=1 ¥to &count;
1BEB when(”&&mvE&i™) output dsn_&&mv&ki;
16ET “end;
1628 “end;
1629
1630 otherwise;
1631 end;
163¢ run;
1633 ¥mend sep;

75 Bi

75

Invoking the Macro Program

To invoke the macro program, we use the macro name
preceded with a %:

%sep (param=value, param=value)

options mprint;

%sep(data=sashelp.class, var=age)
%sep(data=sashelp.class, var=sex)

76

76

Generating Code for AGE

Variable

H H . data
Partial SAS Log for AGE Variable: 2do. 1=1. %to scount;
dsh_&&musi
MPRINT(SEP): data dsn_11 dsn_12 dsn_13 dsn_14 dsn_15 dsn_16 ; “end;
MPRINT(SEP): set sashelp.class; .
MPRINTESEP%: sele?t[?ge]; ¢
MPRINT(SEP): when(11) output
MPRINTESEP%: when%12% output BBt Bdata;
MPRINT(SEP): when(13) output)
MPRINT(SEP) : when(14) output L omal gelecf{&uar}, . -
MPRINT(SEP): when(15) output ®iT &var = age “then Xdo;
MPRINT(SEP): when(16) output \\\\ZGO i=1 %to &count; i
MPRINT(SEP): otherwise; when(%&mv&i) output dsn_S&mvii;
MPRINT(SEP): end; “end;
MPRINT(SEP): run; %end;
i “else %do;

NOTE: There were 19 observationsN\cead from th| . "5 0 et — - s s s o
NOTE: The data set WORK.DSN_11 has\gZ observat “do. I=1"#to &count;)
NOTE: The data set WORK.DSN_12 has B\observat when("&&mv&i”) output dsn_8&musi ;
NOTE: The data set WORK.DSN_13 has Zend;
NOTE: The data set WORK.DSN_14 has 4 obsgrvat| xend;
NOTE: The data set WORK.DSN_15 has vathores oo o —voer touTos
NOTE: The dats set WORK.DSN_16 has | obserMWations and 5 variables.
NOTE: DATA statement used (Total process ti i

real time 0.08 seconds

cpu time 0.06 seconds

7

run;

otheruise;
end;

Note how the values for the AGE value were not quoted

based on the condition in the %IF

statement.

77

S

Generating Code for SEX Variabe

MOTE: There were 19 observations
MOTE: The data set WORK.DSN_F has
MOTE: The data set WORK.DSN_M has
NOTE: DATA statement used (Total progess time)

Partial SAS Log for SEX Variable: i PR N
dshn_S&muki

MPRINT(SEP): data dsnh_F dsn_M ;4—-“‘----——————————___7 Zend;
MPRINT(SEP): set sashelp.class; ;
MPRINT(SEP): sclect(scx); “
MPRINT(SEP): when(”F”) output dsn_F; set &dats;
MPRINT(SEP): when(”M”) output dsn_M;
MPRINTESEP}: otherwise; select(&var);
MPRINT(SEP): end; VIR = o
MPRINT(SER): run, 4|;d§uar age “then ¥do;

ead from t
observati
observat

“en
zZend;
v.e | se

real time 0.03 secohn vdo

cpu time 0.03 seconds

“Zen

78

Zend;

i=1 %to &count;
when(%&mv&i) output dsn_%&mv&i;
d;

#do;

P21 %o BeOunt;
when("&&mv&i”) output dsn_8&musi ;
d;

run;

otheruise;
end;

Note how the values for the SEX variable are quoted

correctly based on the %IF logic.

78

39

79

Final Thoughts

The SAS Macro Facility is extremely powerful. But it only
types code for you! Therefore, it is essential to start with a
working SAS program or programs before you write any
macro code.

Classes:
SAS Macro Language 1: Essentials
SAS Macro Language 2: Advanced Techniques

Books:
Art Carpenter
Michele Burlew

Papers:

http://www.lexjansen.com (to search for papers on Macro
topics)

79

80

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration. Other brand and
product names are trademarks of their respective companies.
Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights
reserved. Updated: 31May2022.

80

40

