

- Concepts
- Example 1: Building a general linear model
- Example 2: Building a generalized linear model
- More about the book

Data science spans a major divide between statistics and machine learning

Models	Statistics	Machine Learning
Goal	Inference, understanding	Predictive accuracy
Data	Planned, observational	Large databases
Meaning	Simplification of reality	Representation of reality
Creation	Specified from knowledge	Learned from data
Form	Interpretable	Black box
Validity	Theory and assumptions	Performance on new data
Concern	Biased inference	Biased data

....

....

• •

••

Example 1: Building a General Linear Model to Predict the Close Rate of a Store 16

17

Data for 35 variables and 500 stores are available for building a predictive model

Variable	Description	Levels of Categorical Predictors
CloseRate	Response	
Region	Geographic region	East, West, South, Midwest
Training	Training status	None, In Progress, Complete
x1 x20	Store characteristics	
P1 P6	Promotional activities	
L1 L6	Special layouts	

can include both classification effects and continuous variables				
GLM Procedure	GLMSELECT Procedure			
Fits and analyzes models	Fits and builds models			
Handles moderate-to-large data	a Handles large-to-massive data			
Designed for inference	Designed for prediction			

•

••

•

• • •

24

Parameter Estimates				
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	59.563030	0.181698	327.81
Region_South	1	0.852461	0.091167	9.35
X2	1	3.959738	0.150641	26.29
X4	1	-3.015353	0.142871	-21.11
L1	1	0.629862	0.149481	4.21
L2	1	0.366923	0.146395	2.5
L3	1	0.412324	0.146743	2.8
L4	1	0.469072	0.144829	3.24
L5	1	0.602895	0.141213	4.2
L6	1	0.530262	0.139327	3.8
P1	1	0.392566	0.149940	2.6
P2	1	0.485213	0.144584	3.3
P3	1	0.592262	0.146886	4.0
P4	1	0.602274	0.148382	4.0
P5	1	0.574614	0.146799	3.9
P6	1	0 462066	0 147162	31

....

. . .

••

.

<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

31

....

33

Poisson regression models—one class of generalized linear models are used to predict the frequency of insurance claims

22 variables for 20,361 auto insurance policyholders

Variable	Description	Levels of Categorical Variables
NumberClaims	Response	
Exposure	Length of time	
AgePolicyHolder	Age	
АгеаТуре	Type of area	City, Rural, Town, Village
<more variables=""></more>		
WorkStatus	Employment	Full Time, Not Working,

34

The HPGENSELECT is the appropriate procedure for building a generalized linear model

••

GENMOD Procedure	HPGENSELECT Procedure
Fits models	Fits and builds models
Handles moderate-to-large data	Handles large-to-massive data
Designed for inference	Designed for prediction

....

.....

•

35


```
37
```


Colin Mallows (1930-2023) introduced C_p, a measure of prediction error, during the early 1970s Intended C_p for finding a unique set of predictors or multiple sets that do well Criticized algorithms that automate model selection by minimizing C_p, SBC, and AIC, describing them as "blind ... they don't look at the data." Suggested model averaging (Chapter 7) Advocated considering what data are needed for the problem and examining the data before making assumptions

• •

Colin and his wife Jean IMS Bulletin, January 2024

Time to Land and Wrap Up

- Versatility for handling different types of responses and effects
- Modern algorithms for good predictive performance
- · Interpretable models that you can understand and explain