A Presentation To The Michigan SAS Users Group 2023 Conference

By

Mike Oliansky

MikeOliansky@gmail.com

Power Analysis What is Power In Testing The Difference Between 2 Proportions

Most of my experience has been in automotive direct marketing.

Example

Direct mail for automotive

- Sent mail with incentive
- Sent email

Send mail and ask did the mail help sell cars? Did it sell enough cars to make a profit?

How to ascertain if the mail worked? Treated group and a control group.

Test difference in buy rates and estimate incremental sales – (treated purchase rate – control purchase rate) x N of treated

For testing we need a significance level

In marketing 90% confidence is common - It means that there is only 1 chance in 10 that the differences we see occur by chance

Marketing people want to mail everyone, sometimes you need to convince them to have a control group

Usually the N of the mailing is determined by budget.

So the usual question is how many people are going to be in the control group?

What is Power In Testing The Difference Between 2 Proportions

Power is the probability that, given the significance lever we will accept, p1, p2, n1, and n2 we will find a difference large enough that we will call it statistically significant

Why is power important?

- If you're performing a test and you have a low probability of finding a difference
 - 1. Why go through the effort and expense
 - 2. Low power could cause you to miss an important difference
 - 3. Underpowered tests build a history of failure with your client

Hypothesis Testing

Alpha – p of calling a difference if the isn't one – false positive Beta – the p of saying there is no difference when there is one – false negative 1 – beta - power

What influences power?

- D effect size the difference between groups
- Variance the variability within the samples
- N the number of observations in each group
- Alpha the significance level you wish to achieve
- One tailed or two tailed test

What is Power In Testing The Difference Between 2 Proportions

Left – distributions of treated and control that do not overlap D is large

Lower left – D is made smaller and it is unlikely the difference will be called significant

Lower right – same D but the variance is reduced because I increased N

P1 and p2 in this example are buy rates – the proportion of owners who purchased a vehicle Where does p1 and p1 come from?

- Experience
- Projection decide how much of a difference is worth finding

Where do we get the significance level?

What about n1 and n2?

Usually we choose a power level we want to achieve and calculate the n required to get there

In this case we have a fixed N and are looking to see how many we need to assign to the control group

```
data null;
controlp = .0063; mailp = controlp * 1.05;
call symput('control',controlp); call symput('treated',mailp);
run;
proc power;
twosamplefreq /* specify the test you're interested in */
                 /* set the parameter you want calculated to missing */
power = .
alpha = .1
               /* set alpha */
sides = U
                 /* specify 1 tail or two tail test */
groupproportions = (&control,&treated) /* p of control and treated */
ntotal=1075494 /* total N */
groupweights= (1 9) (2 8) (25 75) (3 7) (4 6) (5 5); /proportion in each group */
run;
```

Note: this treated and control difference could result in the sale of an additional 338 vehicles

Power Analysis In Direct Marketing

5% improvement Treated vs. Control

Fixed Scenario Elements					
Distribution	Asymptotic normal				
Method	Normal approximation				
Number of Sides	U				
Alpha	0.1				
Group 1 Proportion	0.0063				
Group 2 Proportion	0.006615				
Nominal Total Sample Size	1075494				
Null Proportion Difference	0				

Computed Power						
Index	Weight1	Weight2	Actual N Total	Power		
1	1	9	1075490	0.472		
2	2	8	1075490	0.634		
3	25	75	1075400	0.684		
4	3	7	1075490	0.720		
5	4	6	1075490	0.763		
6	5	5	1075490	0.776		

10% improvement Treated vs. Control

Fixed Scenario Elements						
Distribution			Asymptotic normal			
Method			Normal approximation			
Number of Sides			U			
Alpha			0.1			
Group 1 Proportion			0.0063			
Group 2 Proportion			0.00693			
Nominal Total Sample Size			1075494			
Null Proportion Difference		0				
Computed Power						
			Actual N			
Index	Weight1	Weight2	Total	Power		
1	1	g	1075490	0.872		
2	2	8	1075490	0.975		
3	25	75	1075400	0.987		
4	3	7	1075490	0.992		
5	4	ϵ	1075490	0.996		
6	5	5	1075490	0.997		

Power Analysis In Direct Marketing

```
proc power;
twosamplefreq
power = . /* calculate power */
alpha = .1
sides = U
groupproportions = (0.0063, 0.006615) /*5% improvement in sales */
                                                  /*vary the total sample size */
ntotal= 500000 1000000 1500000 2000000
groupweights= (1 9) (2 8) (25 75) (3 7) (5 5); /* same group weights as before */
plot x = n YOPTS=(REF=0.8 0.9) vary(color by groupweights);
/* request a plot x= parameter on x axis, yopts is asking for a reference line, request different colors for groupweights lines*/
run;
```

Power Analysis In Direct Marketing

