02/23/2018

SAS Programming Efficiency:
Tips, Examples, and PROC
GINSIDE Optimization

Lingqun Liu, University of Michigan

MISUG, Feb 2018

Outline

* This paper first explores the concepts of efficiency.

* Then reviews some relevant materials and tips available online.

* Examples of efficient programming.
* PROC GINSIDE optimization.

02/23/2018

Efficiency: Concepts

* Computer resources
* Human resources
* SAS OPTIONS: STIMER, FULLSTIMER
* Time, time, time:
* Less I/O time,

e Less CPU time,
* Less human time

» Two principals/strategies: Do the right thing, and do it right.

Programming Efficiency Tips

* Google search for “SAS efficiency”
* Presentations at MSUG meetings

“Leave Your Bad Code Behind: 50 Ways to Make Your SAS Code Execute More Efficiently”,
by William Benjamin, June 2017 one-day conference.

“SAS Advanced Programming with Efficiency in Mind: A Real Case Study”,
by Lingqun Liu, Feb 2017 meeting.

“Quick Hits - My Favorite SAS Tricks”, by Marje Fecht, May 2013 one-day conference.

“Utilizing SAS for Efficient Coding”, by Michelle Gayari, November 2009 meeting.

02/23/2018

Programming Efficiency Tips

New Tips
1) Use array to reduce coding

Original tips #16-#17 presented at MISUG June 2017 one-day conference

set sample;
array vars {3} vara varb varc;
do i=1 to 3;

This works: This is uses less code:

if vars[i]>1 then do;
A= var[i]*amount*cmmisions;
end;
2) Use IF ELSE to avoid wasting extra CPU time
set sample;
if varc>1 then do; end;
else if varb>1 then do; .. end;
else If vara>1 then do; .. end;

3) Use temp variable to reduce coding
set sample;
if varc > 1 then _temp = varc;
else if varb>1 then _temp = varb;
else if vara>1 then _temp=vara;
if _temp>1 then do;
end;

4) Use temporary variable and IFN() function to reduce coding

3

temp=ifn(varc>1,varc, ifn(varb>1,varb, ifn(vara>1,vara, .))); -.-

Computers are good at doing the same thing over | One way 1o rewrile the code on the lefl is 10 use
and over again. But, do not like to ines. The following is nple.
code the same thing over and over again. Take this

code for an example. Data test;
Data test, Set sample;
Set sample; Temp =vara

If vara >1 then link test;
ifvara > 1 then do;
Temp =varb;

If varb >1 then link test,

End; Temp =varc,
Ifvarb > 1 then do; Ifvarc >1 then link test;
A

Return; * end of the main datastep;

End * this subroutine code s executed thiee imes;
If varc > 1 then do;

A= varc * amount * commission; Test
12,

A=Temp * amount * commission;
A+B; B=A/2

End, C=A+8B;

Return; * end of the subroutine;
Run; Run;

This is the same code as the previous example, but | The use of a macro to do the same task over and over

a second solution is presented that makes the code | again works well too.

Programming Efficiency Tips

New tips

1) Use built-in function REPEAT() to simplify the code.
flag=repeat(“0”,31);
1) Use array to simplify the code
array conds {31} cond_1 — cond_31;
do i=31 to 1 by -1;
if conds[i] = i then substr (flag,32-i,1) =717;
end;
1) Use LENGTH statement and CATS() to simplify the code
length flag $31;
array conds {31} cond_1 - cond_31;
do i=31 to 1 by -1;
flag = cats(flag,conds[i]=

end;

or

do i=1 to 31;
flag=cats(conds[i

,flag);
end;

What if the conditions conds[i]=i are changed and there is no pattern?
A TEMPORARY array will do the trick.
array _cs {31} _temporary_ (12 3 .. 4 5 6);

do i=1 to 31;
flag=cats(conds[i]=_cs[i],flag);
end;

Original tip #48 presented at MISUG June 2017 one-day conference

Data Master_file;
flag = '0000000000000000000000000000000'; * 31 zeros;

Set my_sas_file;

It (cond_1 = 1) then substr(flag,31,1) = *1';
If (cond_2 = 2) then substr(flag,30,1) = '1';
If (cond_3 = 3) then substr(flag,20,1) = '1';
*. . . more conditions . . . j

If (cond_20 = 4) then substr(flag,3,1) = '
If (cond_30 = 5) then substr(flag,2,1)
If (cond_31 = 6) then substr(flag,1,1)

Conditions_flag = input(flag,ib4.) ; * convert the flags to a real numeric variable;
* IB4. informat is Integer Binary for & bytes.
* It knows there were 31 binary digits not 32;

run;

proc sort data = Master_file

(where=(Conditions_flag=1nput (*1010000000000000000000000000010" ,b4.))}
Out = New_subset_file;

by key;
run;

02/23/2018

Programming Efficiency Examples

* How to check missing values of all variables in a data set

* How to identify the new or changed records

* How to identify common variables in multiple data sets
* Use the right SAS built-in functions

Programming Efficiency Examples

* Check missing values of all variables in a data set

proc format;

value $miss

"T," "="c_missing”

other="c_non-missing”
value miss
.="n_missing”
other="n_non-missing

run;

ods output OneWayFregs = _checking_missing_

(keep=table frequency percent cumfreq: cumpercent f_:);

proc freq data= _test_;

table _all_/missing;

format _numeric_ miss. _CHARACTER_
run;
ods output close;

data _missing_;
length table $32;
set _checking_missing_ ;
length formated $30;
formated = cats(of f_:);
table=substr(table,7);
drop f_:;

run;

$miss. ;

02/23/2018

Programming Efficiency Examples

 Check all variables in a data set w/o using %macro loop

Similarly, this technique can be
used to summarize all numeric
variables in a data set.

proc means data=_test_
noprint;
var _numeric_;
output
out=_all_mean_ n=
nmiss= mean=/autoname;
run;

Create Frequency table for all variables in a data set.
ods output OneWayFreqs = _freq_all_ (keep=table
frequency percent cumfreq: cumperc: F_:);
proc freq data=sashelp.class;

table _all_/missing;
run;
ods output close;

data freq_all (keep = varname value freq: cum:);
set _freq_all_ (rename = (table=varname));
value=cats(of F_:);
varname=substr(varname,7);

run;

9
P ing Effici E |
* Check missing values of all variables in a data set
Aag . i " Tabis__[fieq] Pucent [Cumfres [ComParc |_F_Hame FSex FAge | Freg | FWegn | Fow | Fowr
5 o T R R
" L2 »
" [T s e
" [s o esing
i = . pimm St
= = » T
" s - e
| table |Frequency| Percent | CumFrequency | CumPercent | formated
[1 |Name 3) 3 1579 c_missing
[2 |Name 1 821 19 10000 ¢_nor-missing
varame N NMiss Mean | 3 |Sex 19 100.00 19 100.00 ¢_non-missing
4 A 19 10000 19 10000 n_normissin
L Age 19 0| 13315789474 j:H:Tgh: 19 10000 19 10000 n,n;n-mw::m:
2 Height 19 0 62336842105 6 |Weight 4 21.05 4 2105 n_missing
3 Weight 15 4 99533333333 7| Weight 15 795 19 10000 n_non-missing
8 |var 19 10000 19 100.00 n_missing
4 var 0 19 9 evar 19 10000 19 100,00 ¢_missing
10

02/23/2018

Programming Efficiency Examples

* |[dentify the new or changed records

Use DATA-MERGE
data compare;
merge master (in=a)
trans (in=b
rename=(varl=_varl var2=_var2));
by id;

if b and not a then flag_new = "1°

else flag_new = "0~7;

if flag_new = "0";

if varl=_varl then flagl= "0";

else flagl="1";

Use SQL-set operation

proc sql;
create table changed_or_new as
select * from trans
except corr
select * from master

quit;

11

Programming Efficiency Examples

* Identify common variables in multiple data sets

proc sql;
create table _common as
select * from a where 0O
union corr
select * from b where 0
union corr
select * from ¢ where 0O

quit;

SQL set operation overlays columns
that have the same name in the
tables, when used with EXCEPT,
INTERSECT, and UNION, CORR
(CORRESPONDING) suppresses
columns that are not in all of the
tables.

12

02/23/2018

Programming Efficiency Examples

* Use the right SAS built-in functions

Old:
text = TRANWRD(TRANWRD(TRANWRD(TRANWRD(TRANWRD Chtmltext, *>","> "), "<","< "),
"&","&t), "7, “"T), """, "'t) ;
New
text = HTMLDECODE(htmltext);
Old:
initial = substr(first_name,1,1)]|substr(last_name,1,1) ;
New
initial = first(first_name)||first(last_name);
Old:
cdate = put(year(datepart(datetime())), f4.) || put(month(datepart(datetime())), z2.);
New

cdate = put(today(),yymmn.);

Optimize PROC GINSIDE

* PROC GINSIDE overview
* An application: find Blocks for Zip code centers

* PROC GINSIDE performance
* Large data sets
* Intensive computations

* Optimize PROC GINSIDE
* Reduce map data sizes — SELECT statement
* Preliminary search — Block limits of XY coordinates

¢ Search within the selected Blocks only — %macro Loop to create ZIP specific
map data set and run PROC GINSIDE for each ZIP.

14

02/23/2018

Optimize PROC GINSIDE

* PROC GINSIDE overview

PROC GINSIDE was first introduced in SAS 9.2. “The new GINSIDE procedure determines
which polygon in a map data set contains the X and Y coordinates in your input data set.
For example, if your input data set contains coordinates within Canada, you can use the
GINSIDE procedure to identify the province for each data point.”

PROC GINSIDE is a application of the point-in-polygon (PIP) ' It
problem. ' ‘

* An application: find Blocks for Zip code centers
* CENSUS Block

https://www.census.gov/newsroom/blogs/random-samplings/2011/07/what-are-census-blocks.html

Optimize PROC GINSIDE

* A application: find Block for Zip code centers
¢ ZIP code and CENSUS Block data sets

\omoressed No i

Column Name Type Length Format Label

W ap Number 8 o The 5-digit ZIP Code

WX Number 8 116 Longitude (degrees) of the center (centroid) of ZIP Code.

Y Number 8 116 Latitude (degrees) of the center (centroid) of ZIP Code.
m -

= [a w | hitpsuivess.canmuagon tr Gy gy By @ §

02/23/2018

Optimize PROC GINSIDE

* Texas has about 2600 ZIP codes and 914,231 Census Blocks

1. Convert Shapefile to SAS MAP data
proc mapimport datafile="&path\&shpfile\&shpfile..shp"
out = map.map_&Ffp._block ;
select geoidl0;
run;

MAP.MAP_48_BLOCK has 43,353,186 observations and 4 variables.

2. ZIP code data
data zip_48;
set sashelp.zipcode(keep= x y zip state);
where state=48;
run;

17

Optimize PROC GINSIDE

* Performance w/o optimization

'proc ginside data= zc_48 map = map.block 48 out = work.zc_48 block |

id geoidl0 ; run ;

NOTE: Compressing data set WORK. GINSID000000000000000000000 decreased size by
2.53 percent.
Compressed is 716243 pages; un-compressed would require 734806 pages.
NOTE: The data set WORK.ZC_ 48 BLOCK has 310 observations and 19 variables.
NOTE: Compressing data set WORK.ZC_48 BLOCK decreased size by 16.67 percent.
Compressed is S pages; un-compressed would require 6 pages.
NOTE: PROCEDURE GINSIDE used (Total process time):
real time 30:59:38.86
! cpu_time 30:58:15.82

02/23/2018

Optimize PROC GINSIDE

* New algorithm step 1

I R L L L

* Algorithm step 1:

rew

u limits of each
EERREERAREARREERAARE

e0id10 to match zip codes;

TrxrEnEEw

rxrrww

sql;
create table block &fp. limit
as n -
select geoidl0
max(y) as max_y
min_y
max_x
»mi min_x
from map.block_&fp
group by geoidl0;

quit;
proc sql;
create table gzinside 1 sfp
as
select a.*
+b.geoidl0
,count (distinct geoid) as ct_match
from ip.zipcode (keep=zip x y state where=(state=sfp)) a

left join block_sfp imit b
on a.y between b
and a.x between b
group by zip;
quit;

Cumulative Cumulative

ct_match Freq y Percent F Percent
0 3 0.12 3 0.12
1 952 36.62 955 36.73
2 958 36.85 1913 7358
3 417 16.04 2330 89.62
4 166 6.38 2496 96.00
5 63 242 2559 98.42
6 23 088 2582 99.31
7 1 042 2593 99.73
8 6 0.23 2599 99.96
9 1 0.04 2600 100.00

Some states, like OK, can have more
than 55% matched with ct_match=1.

19
Optimize PROC GINSIDE
* New algorithm step 2
E data _null _;
* Algorithm step 2: use p. ide !az‘l zip codes with set map.gzinside_1;
* HEARRRRRAR RN RS " where ct_match>l;
call execute(catt('tginside(', zip,'):")):
Smacro ginside(zip); run;
proc sql: data map.gzinside &fp;
create table map_s&zip set ginside :
as map.gzinside 1 (in=a where=(ct_match<2)):
select a.* if a chen rc=l; else rc=
from map.map_&fp._block a, map.gzinside 1 b if a and geoidlO='' then rc=9;
where b.zip=izip and a.geoidl0=b.geoidll; run;
quit;
proc freq data=map.gzinside &fp;
proc ginside table rc;
data= map.zip &fp (where=(zip=izip)) ku:::
map = map_&zip
out = ginside_szip: * wwmaw END ¥ SRR AN AN RO R R AR AR AR AR TR RN
id geoidl0;
Tun;
Cumulative Cumulative
tmend ginside; rc Frequency Percent Frequency Percent |
1 952 36.62 952 36.62 |
2 1645 63.27 2597 99.88
Each ZIP/GINSIDE took only 0.02 ~ 0.04 seconds. 9 3 0.12 2600 100.00
20

10

02/23/2018

Optimize PROC GINSIDE

New algorithm step 2:
* %macro Loop: create and process ZIP specific data

Applications that break and process data sets chunk by chunk are not efficient if the data

sets can be processed as a whole, because it increases I/O operations. An example can be
found in the paper presented at MISUG Feb 2017 meeting. Here the situation is different.
%macro loop is efficient.

e Data-oriented
Instead of searching among about 914,231 polygons in Texas Block data set (43,353,186
observations), the new algorithm search only among 2 to 9 polygons for each zip code. It

runs much faster since it reduces lots of CPU time and I/O time.

21

Optimize PROC GINSIDE

* Results and improvement

records runtime - PC runtime - Linux
w/o 310 ~ 780 ZIP codes e 31~33 hours
optimization in Texas
2600 ZIPinTexas| > 3days, job <30 minutes
killed
4356 ZIP codes - 135 hours
optimization 2600 ZIP codes < 6 minutes 3 minutes

41k ZIP codes

< 8 hours, 1 hour w
reuse
of the limits files

< 30 minutes

22

11

02/23/2018

Optimize PROC GINSIDE

Summary of the optimization

1. Use the select statement to reduce map data file size.

2. Use Block limit data sets (that have way much less observations
than the original Block data sets) to perform first match.

3. Use ZIP specific map data sets to enormously reduce the search
range of GINSIDE procedure. Instead of searching within 914,231
blocks, GINSIDE only searches within about 5000 blocks overall.

4. In short, it reduces a large number of the processed records;
therefore, it reduces I/O and CPU time. The improvement is
significant.

23

Another Optimization Example

Medicare Part D claim data and patient data
2. Code is shorter, easier to understand (user friendly)

Less than 80 lines. (original one has 185 lines)

3. Run faster
One-drug job run time less than 1 hour (original one took 13~33+ hour)
Three-drug job run time less than 3 hours (original one took 72~96 hours)

4. Algorithm: simplified, all in one batch/bunch process.
Avoid %macro loop. Only 5 steps (original one has around 1000 steps)

e
e e

24

12

02/23/2018

Questions and Comments

THANK YOU!

Contact: Igliu@umich.edu

13

