Putting the Meta into the Data: Managing Data Processing for a Large Scale
CDC Surveillance Project with SAS®

Louise S. Hadden, Abt Associates Inc.

ABSTRACT

There are myriad epidemiological and surveillance studies ongoing due to the pervasive COVID-19
pandemic, often embodying the definition of “big data” with thousands of participants, variables, and lab
samples. Data can be derived from many different streams in a given study, for example: REDCap
software, electronic medical records (EMR), chart abstraction, laboratory records, etc. Different
contractors can be managing distinct aspects of the same project, the data is changing minute to minute,
and the deliveries are required at a fast and furious pace. Wrangling all the different data sources
requires robust data management routines, and SAS® can help, with tools to obtain data via APIs and
PROC HTTP, metadata resources, and programming techniques. This paper and presentation will outline
best practices for managing multiple aspects of large scale CDC surveillance projects, using SAS.

INTRODUCTION

Any big study involves data acquisition, deliverable schedule, data and programming management
concerns, ever-changing data structures, the dangers of programming “silos”, data and code quality
concerns, tracking and communication, and most of all time concerns. This paper will look at two large
scale, multi-site CDC surveillance studies involving COVID and flu testing, and other health metrics. Both
projects are with the CDC, involve distinct aspects of COVID 19, and the CDC is heavily involved in
analytic planning and specifications. The EMR project had monthly deliveries, while the REDCAP project
has weekly to biweekly deliveries, and in rare cases more than one delivery a week. Results from the
REDCAP project have gone directly to CDC and the White House, so the stakes are extremely high in
terms of quality assurance and rapid turnaround. The EMR project was designed to assess the effect of
COVID 19 on pregnant women and children and had three sites across the United States. The REDCap
project (one of a number of different projects in house) was designed to monitor the ongoing effects of the
COVID 19 pandemic on first responders in the US, and has numerous sites and REDCaps.

If you are not familiar with REDCap, it is a browser-based, metadata-driven EDC software and workflow
methodology for designing clinical and translational research databases. Many institutions use REDCap
to develop online surveys and databases. There are millions of projects using this resource. It definitely
has a pretty clunky interface with regards to SAS, a little better with R, but we endeavor to make it work.

SCENARIOS

We will discuss how we use SAS to help wrangle these COVID related data bases. For scenario 1, we will
dive into data dictionary read in and uses in labeling, formatting, etc. For scenario 2, we will look at
comparisons of data dictionaries and formats.

As noted above, these projects have different study designs: Scenario 1 has a combination of REDCap
survey data and EMR data, while Scenario 2 has a combination of REDCap survey data and serology
test results. These two projects have common and differing data management and SAS programming
challenges. Commonalities for both of these scenarios are: a vast amount of data from different data
sources, multiple data areas, and multiple analytic agendas; quick turnaround deliveries (monthly on one
project, weekly+ on another project); and very high visibility (results going into White House briefs) which
necessitates actionable quality assurance.

A cornerstone for big projects like these is data management. My company mandates data management
and code quality assurance plans for every project. Key data management tools that we use on a daily
basis include: data receipt and delivery logs; shared process trackers; details of the data management
and code quality plans, staffing plans, and last, but not least, data dictionaries. We will drill down on the
use of data dictionaries to drive much of our processing for both projects, creating files and processes

from the metadata contained in data dictionaries and files to drive the provision of variable and value
labels, order files, assign variable prefixes and split out subsets of files, as well as drive the creation of
format assignment statements and reporting for file subsets.

SCENARIO 1

A data dictionary for a file based on Electronic Medical Records (EMR) contains variables which
represent an unknown number of COVID-19 tests for an unknown number of infants — there is no way to
know in advance how many iterations of the COVID test variable will exist in the actual data file from
medical entities. In addition, variables in this file may exist for three distinct groups (pregnant women,
postpartum women, and infants), with PR, PP and IN prefixes, respectively. We will demonstrate how to
ingest data dictionaries to collect metadata for this project allowing identification of groups for processing,
and drive label (and value label) description creation for iterated (and other) labels using SAS functions,
PROC FORMAT, AND DATA step processing, as well as other utilities.

Data dictionaries that are constructed via a collaboration between the CDC, study sites, and project staff
are provided to study sites, who return extracted electronic medical record (EMR) data to us for
processing.

There are two separate data dictionaries used for this project, for person-level and visit-level variables.
The data dictionaries in use for the study have multiple tables and thousands of variables. Individual
variables have up to two # signs (iteration flags), appear in a single row in the data dictionaries, and may
occur more than sixty times. Variables to the right of the screenshot shown below indicate whether the
variable is present for pregnant women, postpartum women, and/or infants. There are six data files
delivered from each site — 2 data dictionaries x 3 populations. We need variable and value labels for each
of the six data files, so we need to build LABEL statements, a format library, and format assignments. We
receive data on an ongoing basis (monthly), so the solution needs to be as efficient and data driven as
possible. Iterated variables, which appear with pound signs in the data dictionaries, appear with numbers
in the actual data and we need a programmatic answer to match the variables in the data dictionaries to
the variables in the data files.

Solutions presented include ingesting data dictionaries to collect metadata allowing identification of
groups for processing, and drive processing with information derived from data dictionaries.

Data dictionary read in

We read in the separate tabs in the workbook in the data dictionary and collect information to be used for
variable names, labels, and value label, as well as other information used solely for data processing. Note
the red # signs, the variable description, which will be turned into a label, and the variable values, which
will be turned into value labels (a format) in Figure 1 shown below.

Challenges for read in include: multiple tabs in each Excel workbook: different starting rows in each tab,
requiring reading in specific ranges; clean up of special characters (tabs, carriage returns),
disaggregation of some fields, making sure errors encountered in read in are addressed; and the need to
collect information on two levels (variable information vs value label information).

“ HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW SAS Louise Hadden -

110 - I v

0 = SARS-CoV-2 negative

1 = SARS-CoV-2 positive <Multiple Testing AND Multiple Fetuse
First test for 1M for SARS-CaV-2 antibody (during the) INEO# will iterate with each fetus/newbor
visit/admission) 2 HOBERUM tating iterate with each test performed on that sp
888 = Missing fetus/newborn.

COVID_IgM_NEO# VTST#

999 = Unknown

» Key Revisions | Identifiers Event Description Wius Testing | Virus Testing Neo ARFI and other Dx Codes Medications_Flu Medit ... (*) 4 »

Figure 1. Sample Data Dictionary

Since multiple tabs are read in with the same structure on each tab, we take advantage of macro
processing to read in our file metadata. We use ranges in our PROC IMPORT, storing valuable metadata
about our incoming data. Note that it is possible to have two level range names, similar to library names,
by preceding the range with the tab name and separated by a dot.

kk******k**k**k**k**k**k**k**k**k**k**k******k************************,-

*** Import Personal Data Dictionary one tab at a time KrK
******k********k******k********k******k**************************;

$macro imptabs (tabn=1, tabnm=identifiers, intab=Identifiers, startrow=10, endcol=H);

proc import dbms=xlsx out = temp datafile = " \file.xlsx" replace;
RANGE="g&intab.$A&startrow. : &endcol.999";
getnames=YES;
run;

First, the LENGTH function is used to calculate the length of “variable”. The length of variable names is
limited to thirty-two characters and the name an of iterated variable may exceed the limits. The data
dictionary is a living document, and if any overlong variables that exist once prefixes and iterated counts
are added to their base, the spelling is adjusted. Identification variables are exempt from prefixes. When a
file is first processed, variables, with the exception of ID variables, have prefixes added, using the CATS
function. Additionally, label strings are created by concatenating prefixes and existing variable
descriptions using the CATX function.

data labelsé&tabn.;
length label labelstr $ 300 variable type $ 8;
set &tabnm (keep=variable : pw preg pw pp inf
where=(variable name ne '' and variable description ne ''));
label=catx(": ","&tabnm.",variable description);
labelstr=cats(variable name, '="',label,'"");

variable length=length(variable name);

length flag=(variable length+7 GT 32);

label variable length="Length of Variable"

length flag="Current Variable Length + 7 exceeds 32";

In preparation for iteration, we use the INDEXC function to find the location (or existence) of # signs. If we wanted to
look for a string (as we do later on) we can use the INDEX function. We use COUNTC to count how many times an
iteration flag occurs in a variable name. Multiple iterations of a variable can occur if, for example, multiple neonates in
a single pregnancy have multiple virus tests.

/* find out the # of iterations within a variable name */

iteration flag=(indexc(variable name, '#') gt 0);

iteration count=countc (variable name, '#');

label iteration flag="Binary: Variable iterations"

iteration count="# of iteration points within variable name";
run;

$mend;

$imptabs (tabn=1, tabnm=Identifiers, intab=Identifiers, startrow=4, endcol=H);

Iteration

It is relatively simple to replace a single iterator, in this case, a #, in a variable name. It is more
complicated to replace two or more iterators, especially if you do not know how many iterations there are.
SAS functions process one variable transformation at a time — that is, they stop after completing a single
operation on a string. After confirming the existence of a # sign in a variable and finding its position using
the INDEX function, we then use the SUBSTR function to replace the # using a do loop, outputting
additional label records for each iteration.

As noted above, we use the COUNTC function to discover how many #s exist in a variable name. You
can use functions to discover the number of iterations needed as well in the actual data — including the
REVERSE and ANYNUM functions — in the actual data. Additionally, the iteration numbers are added to
the label strings using CAT functions. Multiple supplemental label records are created until no more #
signs appear in the variable names.

We have thousands of variables, and multiple occurrences of iteration and the need to replace (via the
SUBSTR function) items of different lengths. We quickly realized we would need to employ macro loops
to manage the different requirements for a number of situations (number of iterations, the “base” of the
variables needing to be iterated, one or two iteration symbols, and substring length). Sample code for a
simple loop and more complex loop follow below.

Simple loop
smacro do listl (maxiter=1l,suffix=neo);
%$do i=1 %to &maxiter;
data iter&suffix.l &i (drop=loc);
length variable $ 50 labelstr $ 300;
set formats0 (where=(count (variable,"#")=1 and

index (variable, "IDENTIFIER#")>0)) ;

*get the first indexed # location;
loc=index (variable, "#");

substr (variable, loc,1)="6&1i";
labelstr=catt (labelstr,"™ #&i");

run;
$END;
$MEND DO LISTI1;
Complex loop
smacro do list2 (maxiter=20,suffix=vtst);
%$1f &maxiter le 9 Sthen %$do i=1 S$to &maxiter;
data iter&suffix.l &i (drop=loc);
length variable $ 50 labelstr $ 300;
set formats0 (where=(count (variable,"#")=1 and

index (variable, "VTST#")>0)) ;

*get the first indexed # location;
loc=index (variable, "#");

substr (variable, loc,1)="&i";

labelstr=catt (labelstr," #&i");
run;
proc print data=iter&suffix.l &i (obs=5) noobs;
var variable labelstr;
run;
$SEND;
%$1if &maxiter gt 9 %$then %do;
$do i=1 %to 9;
data iter&suffix.l &i (drop=loc);
length variable $ 50 labelstr $ 300;
set formats0 (where=(count (variable,"#")=1 and

index (variable, "VTST#")>0)) ;

*get the first indexed # location;
loc=index (variable, "#");

substr (variable, loc,1)="6&1i";
labelstr=catt (labelstr,"™ #&1i");

run;

proc print data=iter&suffix.l &i (obs=5) noobs;
var variable labelstr;

run;

$END;

%do i=10 %to &maxiter;

data iter&suffix.l &i (drop=loc);
length variable $ 50 labelstr $ 300;
set formats0 (where=(count (variable,"#")=1 and

index (variable, "VTST#")>0)) ;

*get the first indexed # location;
loc=index (variable, "#");

substr (variable, loc,2)="6&1i";
labelstr=catt (labelstr," #&i");

run;

proc print data=iter&suffix.l &i (obs=5) noobs;
var variable labelstr;

run;

SEND;

SEND;

$MEND DO LIST2;

Practical applications

Variable Labels

The iteration techniques discussed above are employed in several different scenarios: data quality
checks, creating variable labels, creating format assignment statements, driving range checks, and
producing missingness reports. Below follow snippets of code to create a data driven variable label
statement. label strings are created by concatenating prefixes and existing variable descriptions using the
CATX function, The CATX function is used to add information as a prefix to the label, such as the month
of data collection or the tab the variable came from in the data dictionary. The labelstr variable is a
sentence that applies a variable label to a variable. When put out to a flat file, it can be included to label
variables in a data set.

Assign a filename for the LABEL statement:
filename labell ".\&short. Labels.txt";

Create iterations of variables with # signs using macro loops described above:

%do listl (maxiter=3,suffix=id);
%do list2(maxiter=4,suffix=vtst);

Add iterated records created by the do loops together:

data expand labels;
set iterid: itervtst: . . .
run;

Add iterated records to the records that did not require iteration:

data labels;
length variable $ 32;
set labels0 (where=(index (variable,"#")=0))
expand labels (where=(index(variable,"#")=0))

run;

Output the LABEL statement:

data tolabel;
retain VARIABLE_CATEGORY VARIABLE LABELSTR
VARIABLE_TYPE VARIABLE_LENGTH
PW PREG PW_PP INF ITERATION_COUNT INLABELS INPOS NUM ;
file labell lrecl=400;
set matchtest (keep= VARIABLE_CATEGORY VARIABLE LABELSTR
VARIABLE_TYPE
VARIABLE_LENGTH PW_PREG PW_PP INF
PRIORITY VARIABLE
MISSING NOT OK ITERATION COUNT
INLABELS INPOS NUM DDioRDER);

by NUM;
STATEMENT=compbl (cats (variable, '=""', labelstr, '""));
if inlabels=1 and inpos=1 then put statement;

run;

Include the LABELstatement:

filename labell ".\&short. Labels.txt";
filename retainl ".\&short. retain.txt";

run;

data &outfi. (label="Labeled &short");
retain
%$include retainl;
set &infi.;
label
%$include labell;

’

run;

Figure 2 is a snippet of the text file included to produce variable labels.

| B_P_IN_7v2_Labels.txt - Notepad - O X

File Edit Format View Help

hN_DATA_EXTRCT_DT="Mo 7v2: Date of data extraction" A
INF_IDENTIFIER="Mo 7v2: Infant identifier #1"

IN_DOB="Mo 7v2: Date of birth"

IN_HR_AC_ENDOCRINE_PL="Mo 7v2: Acute endocrine complications”
IN_HR_AC_GASTRO_PL="Mo 7v2: Acute gastrointestinal complications”
IN_HR_AC_HEART_FAIL_PL="Mo 7v2: Acute heart failure diagnosis"”
IN_HR_AC_HEART_PL="Mo 7v2: Acute heart disease diagnosis"”
IN_HR_AC_HEMATO_PL="Mo 7v2: Acute hematological complications”
IN_HR_AC_LIVER_FAIL_PL="Mo 7v2: Acute liver failure diagnosis"”
IN_HR_AC_NEURO_PL="Mo 7v2: Only Acute Neurologic disease diagnosis"” v

< >
Figure 2. Sample Label Statement Text File

Value Labels (FORMATS)

Let us review the data dictionary screenshot again, focusing on the variable values columns and rows.
Note that the variable name, variable description and notes fields are single rows, but the value labels are
separate rows. Originally, the value labels were on single rows in the Excel data dictionaries but that
made parsing the variable values field incredibly difficult so we redesigned the data dictionary to have a
separate row for each variable value. When we read in the rows shown, we get five rows of data. Only the
first line of data contains variable name, variable description, and notes, while each value label is on a
separate row. To produce variable labels, we remove rows in blanks in the variable name field as we saw
above, for value labels, we need to fill in those missing cells programmatically.

“ HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW SAS

110 -

fi

Al Visit-level file (vari:

les pulled during the data pull that covers the time window in which the visit teok place)

0 = SARS-CoV-2 negative

1 = SARS-CoV-2 positive
First test for IgM for SARS-CoV-2 antibody (during the

COVID_IgM_NEO#_VTST# 2= No SERUM festing

Louise Hadden -

<Multiple Testing AND Multiple Fetuse
INEO# will iterate with each fetus/newbor

7 visit/admission) iterate with each test performed on that sp

8 888 = Missing fetus/newborn.

9 999 = Unknown -
3 Key Revisions Identifiers =~ Event Description = WirusTesting | Virus Testing Neo | ARFl and other Dx Codes = Medications Flu | Medi ... () 4 »

-— 4 100%

**;

*** Import Personal Data Dictionary one tab at a time
**;

* kK .
’

%macro imptabs (tabn=1, tabnm=identifiers, intab=Identifiers, startrow=10, endcol=H);

proc import dbms=xlsx out temp datafile " \file.x1lsx" replace;
RANGE="&intab.$A&startrow. : &endcol.999";
getnames=YES;

run;

data labelsé&tabn.;
length variable name $ 32 variable values edited varlabel $ 300 start $ 8
variable type $ 8 ;
set &tabnm (keep=variable : pw preg pw pp inf
where=(variable values ne '' or variable name ne ''));

/* replace special characters such as tabs with blank and remove extraneous blanks */
variable values edited=translate(variable values,' ','09'x);
variable values edited=translate(variable values edited,' ','0A'x);
variable values edited=translate(variable values edited,' ','0D'x);
variable values edited=compbl (variable values edited);

/* create start and label variables for a start on building formats */

if variable type not in('ID', 'DATE') then do;
start=scan(variable values edited,1,"=");
varlabel=scan(variable values edited,2,"=");

end;

This is a similar read in as used for variable labels above, but there are key differences. For example, we
are keeping records with either the variable name present OR variable value labels present. The reason
for this is that some variables do not have formats assigned, or they have a blank line where a range
should be specified, so if there is a variable name only, we keep the record. This will be addressed in a
manual review step later, and if required, the data dictionary corrected.

In the code snippet below, we fill in the missing rows with the RETAIN statement, and create a format
name, among other things. We then export the temporary data set to a spreadsheet for manual checks
and adjustments.

retain variable type;

if not missing(variable type) then variable type=variable type;
else variable type= variable type;

drop variable type;

formatstr=variable values_ edited;

if variable name ne '' then fmtname=cats(variable name,'

")

@A S DD_QC_Personal_Format_Asmt_editeddsx - Excel ? - 85 X
m H INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW SAS Louise Hadden ~
XH Calibri SEEIY 'y = ¥- F Wrap Text General :-'-x o ¢ rm mx [y gi”“‘:“m : é\v ﬁ
rd Alignment Nur St ell Ed ~
k135 fe
A B H K M N O P -
1 variable_name ~ format_ré * fmtname ~ |varlabel * start * lend * hlo v|sexc ~ eexd |vlite~ i~ Notes +
119 FLUVX_SEASON Y FLUVX_SEASON_ Yes (received influenza vaccine) 1 1 N N 00
120 FLUVX_SEASON Y FLUVX_SEASON_ No (unvaccinated) 'U 0 N N 00
121 FLUVX_SEASON Y FLUVX_SEASON_ Missing a8s a8 N N 00
122 FLUVK_SEASON Y FLUVK_SEASON_ Unknown "a3g 939 N N 00
123/ FLUVX_PR_SEASON ¥ FLUVX_PR_SEASON_ Yes (received influenza vaccine) 1 1 N N 00
124 FLUVX_PR_SEASON ¥ FLUVY_PR_SEASON_ No (unvaccinated) (] i N N 00
125 FLUVX_PR_SEASON ¥ FLUVX_PR_SEASON_ Missing (T 888 N N 00
126 FLUVKX_PR_SEASON Y FLUVX_PR_SEASON_ Unknown 393 993 N N 00
127 FLUVK_SEASON_DT ¥ FLUVX_SEASON DT [mmddyy10.] "21914 99939 OF ¥ N 00
128 FLUVX_SEASON_DT Y FLUVX_SEASON DT_ Unknown or could not be determined 21914 -21914 N N 00
120 FLUVX_PR_SEASON_DT ¥ FLUVX_PR_SEASON_DT_ [mmddyy10.] 21914 99939 OF ¥ N 00
130 FLUVX_PR_SEASON_DT Y FLUVY_PR_SEASON_DT_ Unknown or could not be determined 21914 -21914 N N 0o
131 COVIDVXL Y COVIDWH_ Yes (received first COVID-19 vaccing) 1 1 N M 00
132 COVIDVX1 Y COVIDVHL_ MNo (unvaccinated) 'U 1] N N 00
133/ COVIDWX1 Y COVIDVX_ Missing ’SES asg N N 00
134 COVIDWXL Y COVIDVXL_ Unknown 393 993 N N 00
135]coviowi ¥ COVIDVX2_ Ves (recelved second COVID-13 vaceing) 1 1 | N 0o
136 COMIDVX2 ¥ COVIDVXZ_ No (unvaccinated) 0 0 N N 00
137 coMInMK? ¥ COMIDVK? Missing () ARRA N [n.n -
DD_PERSONAL_FORMAT_ASMT + ‘ 3

The screenshot above shows some (but not all) of the columns used to create complex formats from a
data set. This spreadsheet output is reviewed carefully, any corrections made, and then it is imported into
a SAS data set for use in creating formats and assignment statements.

Building a format library programmatically

We are keeping variable name in our SAS data set derived from the spreadsheet above, so that we can

create FORMAT statements as well as a format catalog. For expediency, we name the format name with
the variable name with a trailing underscore, stripping the iterator pound signs. To build a library, you
need the following three fields:

FMTNAME - format name

LABEL - value label

START - start of a range or value

Additional fields that are used in our processing are:
Variable_name — used to build format assignment statements
Format_required — some variables do not require a format
END - end of a range

HLO - specialized formats — high, low, other

SEXCL (exclude the start of the range)

EEXCL (exclude the end of the range)

We have some complex formats for dates, ranges and nested formats which require END, HLO, SEXCL
and EEXCL.

How do FORMATS work?

The best way to figure out how formats work is to analyze them. The client for this project wanted to
assign special date values for missing values. We create a small data set with the special dates and
explore to see how this complex format looks in various forms. The same technique can be used to look

at ranges. What we are trying to achieve is an input data set which looks like what SAS expects under all
conditions.

data temp;
d1='01janl1900'd; d2='01janl960'd; d3=today(); d4='01janl1940'd;
run;

proc print data=temp;
run;

proc print data=temp;
format dl d2 d3 d4 mmddyylO.;
run;

proc format fmtlib;
value foo '01janl900'd='Invalid'
'01janl1940'd='Still in'
'01janl960'd="'SAS zero'
other=[mmddyyl0.];
run;

proc print data=temp;
format dl d2 d3 d4 foo.;
run;

proc format cntlout=foo2;
run;

proc print data=foo2;
run;

Below we see the number representation of the special dates, followed by their formatted version (SAS
data format), followed by our user-defined format.

Obs dl d2 ds3 d4

1 -21914 0 22475 -7305
Obs dl d2 ds3 d4

1 01/01/1900 01/01/1960 07/14/2021 01/01/1940
Obs dl d2 ds3 d4

1 Invalid SAS zero 07/14/2021 Still in

Below follows the result of PROC FMTLIB, showing how SAS represents the special date format in
printed form. Note the other — this is a nested format indicating that any “other” dates should appear in
MMDDYY10. format. You can use any SAS-supplied or user-created format as long as the program has
access to where the format is stored.

| FORMAT NAME: FOO LENGTH: 10 NUMBER OF VALUES: 4 |
| MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH: 10 FUZZ: STD |
| = e e e \
| START | END |LABEL (VER. V7|V8 14JUL2021:13:08:59) |
| mmmmmm Fmmm e T e \
| -21914 | -21914|Invalid

| -7305]| -7305|Still in

| 0 0| SAS zero |
| **OTHER* * | **OTHER* * | [MMDDYY10.]

PROC FORMAT CNTLOUT produces a SAS data set from a format catalog file, which produces yet
another vision of the same format. It is this version that we need to reproduce in order to use metadata to
create format catalogs.

10

Using PROC FORMAT CNTLIN

Here we create the input to PROC FORMAT CNTLIN from our data dictionary import file, making
adjustments to conform to SAS’ requirements for CNTLIN data sets.

File Edit Format Miew Help
sk o ok o ook Rk o Kk ok ok K ook ok K o o Kk ook ok ook ok R ook o ook ok ok ok ok o ok ok ko ok ok 3k ok ok ok o oK ok ko ook ok ok ok ok koK ok R ook ok ok ok ok ok Kk R kK R ROk k|

**¥* Create CNTLIN file
KK KK KKK KK K K KKK K KKK K K KK K KKK KK K K K KKK K K K o 3 KK KK o KOK KK K K

data personformats_&procmo (keep=variable name fmtname start end
label type hlo sexcl eexcl iterated);
length fmtname $32 type %1 start %14 label $368;
set person_cntlin (where=(format_req ne ‘N') rename=(varlabel=label));
if wariable_type in('CHAR®,*ID") then type=‘c"';
else type='n";
iterated=(index(variable_name, "#"')>8);

label fmtname = ‘Name of Format'
start = 'Start of Range for Format®
end = "End of Range for Format'
sexcl = 'Starting value excluded from Range'
eexcl = 'Ending wvalue excluded from Range'
label = ‘Label for Format'
type = 'Type of Format'
hlo = 'High-Low-Other flag®
iterated = 'Iterated wvariable' ;

Ln 151, Col 27

proc format library=library.personformats cntlin=personformats &procmo fmtlib ;
run;

Eile Edit Format Wiew Help

mTU < = 4®»0g
MOERECOET=r

Invalid

Still in

SAS zero
*FOTHER** *¥OTHER** MMDDYY 18,

Lnd4, Col 1

11

File Edit Format View Help

|LABEL (VER. 9.4 147012621: 13:69:86) |

@ |Adeno negative
1| Adeno positive
2|Not tested

888 |Missing

999 | Unknaown

FORMAT NAME: AMB_VISIT_DT_ LENGTH: 34
MIN LENGTH: 1 m™AX LENGTH: 4@ DEFAULT LENGTH: 34 FUZZ: STD

|
L. L (VER. 9. 143UL 1:13:99:
START ABE ER. 9.4 4JUL2621:13:99:86
e e Hmmmm e m e |
| -21914| -21914 |Unknown or could not be determined

[n |

Ln1, Call

Creating a format assignment statement programmatically

data fmtstm;
length fmtstm $ 80 fmtdot $ 33 variable name $ 32;
file ".\s&outfi. fmt statement.inc" lrecl=80;
set temp (where=(indata ne 0));

fmtdot=cats (fmtname, '.");
fmtstm=catx (' ',variable name, fmtdot);
put fmtstm;

run;

We use the same data set used to create the format catalogs / SAS data sets containing formats to
generate format assignment statements. Note the use of SAS functions to add the dot following the
format name, as this does not exist in the SAS data set. This format statement can be included in
programs to analyze and characterize the data files. Below follows a screenshot of the format assignment
file.

File Edit Format View Help

PREGNANCY_COUNTER PREGNANCY_COUNTER_.
PP_WAT_MEDICAID MAT MEDICAID .
PP_DATA_EXTRCT_DT DATA_EXTRCT DT .
PP_FLUYX_SEASON FLUYX SEASON_.
PP_FLUVX_PR_SEASON FLUVX_PR_SEASON_.
PP_FLUVX_SEASON_DT FLUVX_SEASON_DT_.
PP_FLUVX_PR_SEASON_DT FLUVX PR_SEASON_DT .
PP_COVIDVX1 COVIDVXL_ .

PP_COVIDVX2 COVIDVX2_.
PP_COYIDVX_DT1 COVIDVX DTL .
PP_COVIDVX_DT2 COVIDVX_DT2_.
PP_COVIDVX2_EXP COVIDVX2 EXP_.
PP_COYIDVX_EXP DT1 COVIDYX EXP_DTL .
PP_COVIDVX_EXP_DT2 COVIDVX_EXP_DT2_.
PP_WAT_DEATH WAT_DEATH_.

PP_WAT DEATH_DT MAT DEATH DT .
PP_HR_BLOOD_PL HR_BLOOD_PL_.

<

Ln1, Col1

12

SCENARIO 2

Our second project is also a large scale, multi-site CDC study involving surveillance, COVID and flu
testing, and other health metrics including lab data handled separately. Data dictionaries are used
extensively, but unlike scenario 1, we do not start with set data dictionaries. The REDCap system is
highly flexible and allows for the addition of new forms over time, which leads to different data
dictionaries, variable lists, etc. Further, different sites may deploy REDCap forms at a slightly different
pace, resulting in input streams with different variables, variable types, etc. REDCaps for each site
generate data dictionaries, format programs, and csv files for each collection of forms each week, and
these are reviewed for the following weeks’ processing. Keeping up with the changes is a full time job for
several people managing different processing streams. It is not in the scope of this particular paper to drill
down on the exact processes used to manage the task of weekly file generation for the CDC, but we will
discuss how we use data dictionaries to design a system to document files sent to the CDC, and compare
data and documentation from REDCap (and more) with the final data and documentation sent to CDC.
We will focus on a single data stream, surveillance data.

Solutions include using data management tools such as control files, and the use of SAS procedures
such as PROC CONTENTS, ODS OUTPUT, and PROC COMPARE. We produce preliminary metadata
on incoming weekly surveillance data, which has been pre-processed in a separate set of steps. A control
data dictionary is produced from the prior week’s delivery, and includes any changes or additions made
during the prior week based on review of added forms, etc. The “curated” metadata is used to create a
draft deliverable file (corrected position, etc.), and new metadata is produced. Metadata from the
incoming file and the curated metadata is compared, and additionally, the format library created by the
incoming REDCap data stream is compared to the curated format library. This allows the detection of
anomalous data and inconsistent formatting.

Using a control file

A helpful solution for repetitive processes with multiple programs or scripts is the use of a control file. In
this case, a week’s processing involves hundreds of processes and all the processes use “dated” data.
We use a control file for all surveillance processing to set the dates for incoming files and deliveries, and
to set up libraries and filenames for processing. This prevents accidental typos or the use of an incorrect
file. The date include file is %included in each program in the surveillance processing stream.

El SurveillanceDatelnclude sas - Notepad -[= = £l 02surveillancereorder.sas - Notepad -[a=
File Edit Format View Help File Edit Format View Help
e 5 A ppptions ps=55 1s=175 errorabend compress=char nofmterr; ~
** Macro variables for Intermediate Surveillance Processing ** options mprint symbolgen mlogic;
** Reset dates each run week based on input file date b
** and delivery dates o libname formats “S:\Projects\RECOVER_HCP_and_FR\2_PROGRAMS\Ad Hoc Tasks
** Reset split spreadsheet file name as needed o+
** Set originating directory b *Assign formats location;
** set delivery directory =5 options fmtsearch=(formats.formats); =
R R 3 %let pgmname=82surveillancereorder;
#* general Processing Notes b
** Create Folder for Biweekly Surveillance in = %include “.\surveillancedateinclude.sas";
** §:\Projects\RECOVER_HCP_and_FR\2_PROGRAMS\Surveillance -
#* Folder name shouild be the delivery date mmddyy format b
** Create subfolder named QC under folder s
** Copy SAS Programs including this file into new folder LA ** program: &pgmname..sas ok
#* Edit this file for new dates b ## Creation Date: April 1, 2021 bl
** Copy program tracking spreadsheet into new folder bl ** project: RECOVER R
** Rename tracker with new delivery date b ** programmer: Louise Hadden had
s H ** purpose: Produce Contents Spreadsheets for Surveillance Input b

H ** Input(s): \1_data\sas data\hand_off\
** input file date bl SURVEILLANCE_LAB_CLEAN_S&inputfiledate..SAS7BDAT **
o : B ** Input(s): \1_data\sas data\hand_off\
%let inputfiledate=110821; - surveil_lab_clean_exp_8&inputfiledate..SAS7BDAT **
Wy H ** Qutput: Contents Spreadsheet for Biweekly Surveillance file b
#* delivery folder dates == #* Notes; R

H ** peer Review (Date, QCer, any remarks) =+
%let delivdate=11882021; ** Revision History (Date, Programmer, Change Description) e

%let priordeliv=118321;
%let shortdeliv=111021;

** Handoff folder path b ** library names are set in include file b

%let handoffdir=S:\Projects\RECOVER_HCP_and_FR\1_DATA\SAS Data\Hand_

——

K
** Handoff folder path =5 ** import tabs in spreadsheet for keep statements =
okt ook . T

5
%let delivdir=S:\Projects\RECOVER_HCP_and_FR\6_DELIVERABLES\Data De

%macro imptabs(tabn=1, tabnm=Codebook,intab=Codebook,startrow=1,endcol=I

** general libname and filename statements b
s H proc import dbms=xlsx out = temp

datafile = *.\QC\RECOVER_Surveillance_DD_&shortdeliv..x1sx" replace
libname in “&handoffdir”; RANGE="8intab.3A8startrow. : &endcol.9999";
libname out ™S:\Projects\RECOVER_HCP_and_FR\2_PROGRAMS\Surveillance\i getnames=YES;
libname del "&delivdir"; run;
libname library "S:\Projects\recover_hcp_and_fr\l_data\sas formats\"
libname curr "."; data &tabnm;
filename odsout “."; length tabname $ 300 variable_name § 32 status § 7;

v set temp; v

< m > < m >

Ln 38, Col 1 13 Ln 1, Col 1

Create metadata from the incoming surveillance file

This is a straightforward process. There are myriad ways to report on SAS metadata — Here is one way to
produce the elements desired for our process. Note that the results are saved as a permanent SAS
dataset.

Olsurveillancecontents sas - Notepad |- = =
Sl Edt_Format Yew telp File Home nset Pagelayout Fomulas Ol Comments 4 Share
=+= Exploratory Contents on created files ey ks “n
paste ¥ U~ A
Smacro pos(dsnum,dsin,tit2); - He (& A~
- ! -
05 QUTPUT attributessattributes positionsposition;
s N
PROC COMTENTS DATA=in.Bdsdn VARNUN;
title2 “Contents of tit2 for adelivdate.”;
AU,
A 8 c [3 ¥
Q05 QUTPUT CLOSE; 1 variable Wum Type len Format Labsl
data positiongdsnun; 2 weeklyl_specimen_id 1 Char 10 Weekly 1 Smd»'sﬂ-mf:cspsﬂmen 1D which appears on an
Length varisble § 32; 3 waekly2_specimen_id 2 Char 10 Wesky 2: Study-spacfiic spacimen ID which appears on an
set position (dropsnember); 4 weekly3_specimen_id 3 Char 10 Weeldy 3 Study-specfic specimen ID which appears on an
run; 5 |wetswabl_sper afchar | 10 Wet Swab L: Study-s pecimen D which sppesrs an
5 wetswab2 S Char 10 Wet Swab 2: Study- pacimen ID which appears on
proc export data - posiciondsoun doms - excel = 7 wetswab3 & Char 10 Wet 5wab 3: Study- peciman ID which appears on
s dle = ".\EEIE2. _Contents_Sdelivdate..xlsx” replace; & wetswabd_specimen_id 7 Char 10 Wet Swab 4: Study-specific spacimen ID which appears on
i 9 wetswab$_specimen_id 8 Char 10 Wet Swah 5: Study-specific spacimen ID which appears on
dsta curr.ra_cantents_idelivdate.; 10 study_id 9 Char 15%15. Unique participant 1D assigned at scraening: 7 characters (1
set positiondsnum; 11 study 10 Num 5 STUDV_F [derived variable] Name of Study
run; 12 study_sita 11 Num 8 STUDY_SITEF, Study site.
. . 13 der_study_part 12 Num 8 DER_STUDY_PART. Study participation status
proc print datascurr.raw_contents_Sdelivdate. (obs=5) noobs; 14 MMWRWEEK 13 Num 8 BEST12. MMWR week number that this row of data was collected it
Funz 15 MMwRYear 14 hum BESTLZ, Year of MMWR week number
P 16 startwesk 15 Num 8 MMDGYY10, Date of First Day in MMWRWEEK
’ 17 endweek 16 Hum 2 MMOCYY10, Data of Last Day in MMWRWEEK
POSITION <
1n55 Col 1 - B D D — -

Report on metadata from the prior week’s surveillance file

The results from the prior week’s processing are output in the form of a “codebook” which includes both
contents information from the prior week’s file and additional items, which include Status, Data
Component, and Value Label. Status and Data Component are collected from the prior week’s DD, and
Value Label is generated programmatically from the format sas data set for the week’s processing.

AutoSave (@ Off) D L Search (Alt+Q) Louise Hadden LH & =@ = (m] X
File Home Insert Page Layout Formulas Data Review View Help i1 Comments 12 Share
E’lj X b Jin AN E=Eee w Generas v | [l Conditional Formatting v | EHInsert ~ * Ay p E} @
-~ $ v % 9 [FHfomatasTablev BXDelete v | I~ 4 —
Paste B I U-. v l===== . = Sort& Find & | Analyze | Sensitivity
o = ===== B G L [iZ Cell Styles ¥ [t Format ~ Q- Filter v Select ~ Data <
Clipboard [Font ~ Alignment sl Number W Styles Cells Editing Analysis | Sensitivity A
c3 @ fi | Admin -
A B C D G H I H
Variable Variable
1 Position Status |Data Component Variable Name Length Variable Format Value Label
2 1|Prior Admin study_id 15|$
1=RECOVER
3 2|Prior Admin study 8|STUDY_F 2 =HERQS
1=BSWH
2 =KPNW
3 =5t Luke's
4 =University of AZ/Tucson
5 =University of UT
4 3|Prior Admin study_site 8ISTUDY_SITEF 6 =University of Miami
0 =Not enrolled
1 =Fully enrolled, ne withdrawal
5 4|Prior Admin der_study_part 8|DER_STUDY_PART 2 =Fully enrolled, withdrew during stug
6 5|Prior Admin mmwrweek 8|BEST
7 6|Prior Admin MMWRYear 8|BEST E
Changes | Codebook | Derivations ® [«] | D]
Select destination and press ENTER or choose Paste [F -——h——+ 100%

Importing the prior data dictionary (DD)

The spreadsheet Codebook tab is read into a SAS data set and saved as a permanent file, via a process
which takes metadata from the current data, the prior “curated” DD, and a module which takes the result
of looking at the format catalog and linking value labels to variable names. The first code snippet below

14

imports the codebook, and the second generates include files (text) for use in creating the deliverable sas
data set, including the status, data component, and label fields.

i} 02surveillancereorder.sas - Notepad |;‘£- | 02surveillancereorder.sas - Notepad \;lﬂ-

Eile Edit Format View Help Eile Edit Format View Help
P PN . N
:‘ ETp::t*faE: i: SE;eEgsr:e::*fD: k:fp*ft‘ffe'l':"t:, en e W‘:; ** now create include files for status, label and data component **;
B ** using edited DD from prior delivery 5
H

%macro imptabs(tabn=1,tabnm=Codebook, intab=Codebook, startrow=1,endcol=I);

i data _null_;

proc import dbms=x1sx out = temp _ length status_statement $ 100;
datafile = ".\QC\RECOVER_Surveillance_DD_g&shortdeliv..x1sx" replace; = file '.\INCLUDE_status.txt' lrecl=180;
RANGE="&intab.3A&startrow. :&endcol . 9999" ; set curr.Codebook_&shortdeliv. ;

getnames=YES;

word1="IF name=

run; THEN status="";
data &tabnm; status_statement=cats(wordl,variable_name,word2, status,word3); -

length tabname $ 3@@ variable_name $ 32 status § 7; put status_statement;

run;

if status="Updat' then status='Updated'; data _null_;

if variable_name='" then delete; length data_component_statement $ 300;
run; file *.\INCLUDE_data_component.txt" lrecl=308;

set curr.Codebook_&shortdeliv. ;

proc print data=&tabnm (obs=5) noobs; word1="IF name="";

format _character_ $48.;
title2 "Test Print of &tabnm";

HEN data_component=

run; data_component_statement=cats(wordl, variable_name,word2,data_component
put data_component_statement;

proc contents data=&tabnm varnum; run;

title2 “Contents of &tabnm";

run; data _null_;
length label_statement § 1000;

proc sort data=&tabnm.; file *.\INCLUDE_label.txt' lrecl=1000;

by variable_position; set curr.Codebook_&shortdeliv. ;
< L bl < [>
Ln 48, Col 14 In1 Col1

Reordering the incoming data set

You may have noticed that the contents of the incoming file had a different variable order than the DD
from the prior delivery. This piece of the program reorders the variables to match what is desired, and
exports the contents of the deliverable file.

J) 02surveillancereorder.sas - Notepad l_‘_- J) i sas - N d

Eile Edit Format View Help File Edit Format View Help

e T e T e e e ~ proc export data = position dbms = excel -
=+ Set up a list to reorder the combined file =+ outfile = ".\Formatted_Surveillance_Contents_8delivdate..x1sx" replace
e run;
PROC 5QL; proc export data = position {where=(flag_label length=1}) dbms = excel
SELECT VARIABLE_NAME outfile = ".\ToolLonglLabellLengths&delivdate. .x1sx" replace;
INTO :COMBKEEP SEPARATED BY " ' run;
FROM curr.Codebook_&shortdeliv. ;
quit; ODS QUTPUT attributes=attributes position=position;
%put &combkeep; PROC COMTENTS DATA=out.RECOVER_Surveillance_&delivdate. VARNUM;

title2 “"Contents of Unformatted Surveillance File for &delivdate.”;
“Create dataset with shortened dataset name for codebook macro; RUN;
data cb out.surv_formatted_&delivdate. |
retain &combkeep ; 0DS QUTPUT CLOSE;
set in.surveil_lab_clean_exp_8&inputfiledate;

keep &combkeep.; proc print data=position (obs=5) noobs;

| title2 "Test print contents of deliverable Surveillance file for &shortdel

run;

%include '.\INCLUDE_label.txt';
run; data positicn;
B length variable § 32;

*Read out reordered dataset with formats stripped; set position (drop=member);
data out.RECOVER_Surveillance_&delivdate.; length_label=length(label);
retain &combkeep.; run;
set cb ;
informat _all_ ; proc export data = position dbms = excel
format _all_ ; outfile = ".\Unformatted_Surveillance_Contents_8delivdate..x1sx" repla
run; run; =

s S 0 0 0 0 0 o

<] > < [>
Ln 153, Col 1 Ln 201, Col 1

Preparing the metadata files for comparison by cleaning and standardizing

We are skipping two programs — one is to create a weekly format library and another is to create a new
DD in the identical format as the prior DD. As you have seen, we have created permanent metadata files
of steps along the way. First up, we try to give the metadata a fair chance by making it as equivalent as

15

possible. Anything someone has edited in Excel has a good chance of having garbage in it like tabs and
line feeds so we strip them.

05CompareDocumentationWIP.sas - Motepad (= o[05CompareDocumentationWIP.sas - Notepad [=[e]|
File Edit Format View Help Ble Edit Format View Help
** massage data Sets to trim down variables to compare =*; y proc sort datasmaster_formats (keepsfatname) outssaster_names nodupkey;
5 by fmtname;
| run;
data_prior;
length value_label § 560; proc sort data=surv_formats (keep=fmtname) out=surv_names fodupkey;
set curr. codebook_&shortdeliv. (keep=variable_name status variable_position A by fmtname;
data_component variable_description B run;
variable_type variable_length .
variable_format value_label); data inboth; . .
Informat a1l : merge master_names (in<a) surv_names (ineb);
format _all ; by fntnane;
e if a and b;
value_label=TRANSLATE(value_label,* *,‘@9'x); /= replace tabs with a single space */ run;
value_label=translate(value_label,” *, 0A'%); /* replace CR with a single space “/ data sub_master (kesp-fmtname start end hlo label type);
value_label=translate(value_label,’ ','@8D'x); /* replace LF with a single space =/ length start end § 32 fmtname § 33; s
value_label=compbl(value_label); perde inboth Cin=e) naster Formats (inmbl)
value_label=left(value_label); by Frtname;
if a and b;
run; if start ne
startsleft(start);
prac sort data=prior; end=left(end);
by variable_position; run;
run;
data sub_surv (keepsfutnase start end hlc label type);
data new; length start end § 32 fmtname $ 33;
length data_component § 63 value_label § S08; merge inboth (in=a) surv_formats (insb);
set curr.metadata_full (keep=name status varnum data_component by fmtname;
label vtype length format value_label if & and b;
rename=(name=variable_nane varnussvariable_position if start ne '
label=variable_deseription vtype=variable_type start=left({start);
length=variable_length format=variable_format)); end=left(end); .
s < L
£ = Ln 97, Col 1
Ln 45, Col 1

We move on to a comparison of the two metadata files, and then the two format catalogs in the form of
SAS data sets.

Comparison of Metadata files

05CompareDocumentationWIP.sas - Notepad [~ (o 05CompareDocumentationWIP.Ist - Notepad [=[eiT|
File Edit Format View Help Ele Edit Formal Mew Help
B Py -
** PROC COMPARE of prior metadata with new metadata s Variables Summary
B =
ods trace on; Humber of Variables in Common: 9.
Humber of Variables with Differing Attributes: 3.
ods output comparedatasets-comparedatasets Humber of ID Variables: 1
o {ables=comp: i comp: =conparesummary;
proc compare basesprior Listing of Common Variables with Differing Attributes
comparesnew ;
id variable_position; 0 variable Dataset Type Length Label
titlel ‘Comparison of major variables';
run; variable_Position WORK. PRICR Hum variable Position
WORK.NEW Hum 8 Variable Number
ods output close; Varisble Description WORK.PRIOR Char 255 Variable Description
WORK.NEW Char 255 variable Label
proc print datescomparedatasets noobs; variable_Format WORK.FRICR Char 31 variable Forsat
titlel 'Comparedatasets’; WORK.NEW Char 32 Variable Format
run;
prac print datascomparevariables noobs; Observatien Summary
titlel ‘Comparevariables’; .
Pun; Gbservation Base Compare ID
proc print datsscomparesusmary noobs; First Obs 1 1 variable_Positions1
titlel ‘Comparesummary’; Last Obs 1042 1842 Variable Positions1042
run; N
| Humber of Observations in Comson: 1842.
ads trace off; Total humber of Observations Read from WORK.PRIOR: 1642,
: Tatal Nusber of Observations Read from WORK.NEW: 1842.
Mumber of Observations with Some Compared variables Unequal: @.
< m ; < L 2
1n 122 Col 1 Ln 1, Col 1

Comparison of format catalogs

Below follows a format comparison — as you can see, the master format catalog, which is updated weekly
but retains error-laden value labels, has coded missing values, changes in value labels, etc. For those of
you who are not familiar with PROC COMPARE output, any mismatches in presence (in this case value
labels that are only in one format catalog or the other) are output with an indicator of whether they are in
the BASE or COMPARE data set. Any mismatches in data values have three lines — the BASE record,
the COMPARE record, and a DIFF record. The DIFF record has a “mask” which indicates where
differences are found in the variable value. In our case, we see that some value labels have changed
over time, and we need to address to provide the client with consistent data.

PROC COMPARE requires the files to be sorted when using the ID statement. We want to match on the
format name and start value. Rather than rely on printed output, we use the OUT= option of PROC
COMPARE to output the comparison and then export to a spreadsheet.

16

Code snippet of PROC COMPARE code

E 05CompareDocumentation.sas - Notepad \;‘E-

File Edit Format View Help

proc sort data=sub_master;
by fmtname start;
run;

proc sort data=sub_surv;
by fmtname start;
run;

proc compare base=sub_master
compare=sub_surv out=result outnoequal outbase outcomp outdif =
noprint;
id fmtname start;
run;

proc print data=result noobs;
titlel 'Comparison of master and surveillance formats';
run;

< m >
Ln 1, Col 1

Spreadsheet of format comparison output

B format_compare_result 03162022.xlsx ~ ,("Q Louise HaL‘Zp LH
File Home Insert Page Layout Formulas Data Review View Help
ATCahbr\ v == & > zY¥
d- B I U- Aa = $ s | BZ R T~ O~
<3 ! & A v e=53= ¥ . [i7] @Formatv &~

Clipboard K Font 5 Alignment Number Styles Cells Editing Analysis Sensitivity ~

s - X v fc | DAYS_SYMPTOMS | N
A B C D E F G H E
1 _TYPE_ _OBS_ fmtname start end LABEL TYPE HLO
2 BASE 4 DAYS_SYMPTOMS_ *XOTHER** **QTHER** BEST32. I oF
3 BASE 5 DAYS_SYMPTOMS_ .A A Missing N
4 BASE 6 DAYS_SYMPTOMS_ 0 0] 0] N
5 |BASE 14| DAYS_SYMPTOMS_ ‘miss miss Missing C
6 BASE 15 DAYS_SYMPTOMS_ miss miss A 1
7 BASE 27 H1_AS_COMPLETE_ **OTHER** **QTHER** BEST32. 1 OF
& BASE 28 H1_A5_COMPLETE_ 0 o No - surveillance centact is incomplete N
9 COMPARE 22 H1_A5_COMPLETE_ D o No - incomplete N
10 DIF 22 HI_AS_COMPLETE_'D cccoveeesnvvsieens e XXKKKKXXKKK, KKKKKKK XK XKXXKKKK K K v vnremmmmnrsnnrinns avveenseeens
11 |BASE 29 H1_AS5_COMPLETE_ 1 1 Yes - surveillance contact is complet N
12 COMPARE 23 H1_AS5_COMPLETE_ 1 1 Yes - complete N
13 DIF 23 HI_AS_COMPLETE_T oo o XXKKKIKKKKKK, KKKKKKK, KK JIXKKKKK v e
14 |BASE 30 H1_AS5_COMPLETE_ miss miss A I
15 |BASE 31 H1_B4_COMPLETE_ **OTHER** **QTHER** BEST32. I oF
16 | BASE 32 H1_B4_COMPLETE_ 0 0] No - surveillance contact is incomplete N
17 | COMPARE 24 H1_B4_COMPLETE_ 0 o No - incomplete N =]
RESULT | &) [«] \ L]

Edit _—

17

CONCLUSION

It is clear that using metadata to drive processing and quality assurance can be incredibly helpful and
comprises a valuable addition to one’s SAS toolbox, along with PROC FORMAT and PROC COMPARE. |
hope you will have some fun iterations with functions with your metadata as well.

ACKNOWLEDGEMENTS

This type of complex programming and processing is a team sport. | could not have created and
implemented these techniques on my own. A very heartfelt thank you to all my Abt colleagues working on
COVID projects.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Louise S. Hadden
Abt Associates Inc.
Louise_hadden@abtassoc.com

Any brand and product names are trademarks of their respective companies.

18

