
Paper 091-2011

READY, SET, RETAIN, AND THEN MAYBE RESET
Lisa Fine, United Biosource Corporation, Ann Arbor, MI

ABSTRACT
The RETAIN statement is one method that SAS® programmers commonly use for making comparisons across
observations. One source of misunderstanding around the RETAIN statement centers around how long a value is
retained and the ability or need to reset retained variables in many circumstances. This paper clarifies, through
examples, how the RETAIN statement overrides the default behavior of a DATA step and maintains a variable’s
values until the value is reset. The scope of the paper is to demonstrate the use of the RETAIN statement in
conjunction with assignment statements.

INTRODUCTION
The RETAIN statement “Causes a variable that is created by an INPUT or assignment statement to retain its value
from one iteration of the DATA step to the next”1 This is in contrast to the default DATA step behavior, which is,
“Without a RETAIN statement, SAS automatically sets variables that are assigned values by an INPUT or assignment
statement to missing before each iteration of the DATA step.” 1

What does that mean in practical terms? It means that the SAS programmer can now easily make comparisons and
derivations across observations. For instance, if we can create a variable to retain a patient’s baseline weight on
every record, we can calculate the change from baseline, by subtracting baseline weight from current weight at any
visit for which weight was measured. Another use of RETAIN might involve retaining the most recent visit’s weight, so
we can use this value in the case that weight was not measured for a particular visit.

One point of confusion has arisen with regard to how long a variable retains a value when the RETAIN statement is
used. Jones and Whitlock2 remind the user that RETAIN does not mean that a variable must retain its value
indefinitely. Rather, it is a request to not automatically set the variable to missing at the top of each implied DATA
step loop. The programmer can always execute commands that change the value of the RETAIN variable.

In its most basic form (RETAIN of a single variable) the syntax for the RETAIN statement is

RETAIN <variable name <initial_value;

Example 1: RETAIN x 0; Assigns the variable x an initial value of 0

Example 2: RETAIN x .; Assigns the variable x an initial value of . (missing), x will be written to data set

Example 3: RETAIN x; Also Assigns the variable x an initial value of . (missing), x will not be written to
data set unless an initial value is assigned elsewhere

As Example 3 highlights, if an initial value is not assigned, the initial value will default to missing. In addition, if an
initial value is not assigned a value elsewhere in the data set, the variable will not be written to the data set, and a
note stating that the variable is uninitialized is written to the SAS log. If the programmer specifies an initial value, even
if missing (‘.’) is assigned, the variable will be written to the data set.

RETAIN AND THE SUM STATEMENT
The sum statement has a built-in RETAIN and therefore is relevant to this topic in that it will require resetting a
variable if the user does not want to continue to accumulate the values of a variable. The SUM statement takes the
form

variable+expression;

and, according to SAS documentation1, is equivalent to using the SUM function with a RETAIN statement as shown
below:

retain variable 0;
variable=sum(variable,expression);

1

For example, the SUM statement on the left is equivalent to the RETAIN with SUM function on the right for creating a
running total (VARSUM) of a variable named VAR.

SUM Statement RETAIN With SUM Function
 varsum + var;

retain varsum 0;
varsum = sum(varsum, var);

VAR VARSUM
1 1
3 4
2 6

It can be seen from the above ‘behind the scenes’ code that using a RETAIN statement with a SUM statement
variable is redundant if the user is initializing the variable to 0. However, if a different starting value is desired a
RETAIN can be used with a SUM statement variable to override the default and initialize a SUM statement variable to
a value other than 0.

HOW LONG IS A ‘RETAIN’ VALUE RETAINED? A VALUE IS RETAINED UNTIL…VOILA, IT
IS RESET
The following examples further clarify how to use the RETAIN statement, particularly with regard to the need to
sometimes reset the retained variables. This first example demonstrates how the values of a RETAIN variable
change at various steps in a program.

EXAMPLE 1
Here is the research problem: Patients are expected to summarize their symptoms in a daily diary. The
programmer is tasked with identifying if a patient had missed days, i.e. days in which the patient did not make an
entry.

The data set used is a small data set with three variables. The data is already sorted by PATIENT (only 1001 is
shown) and Diary Entry Date.

FIGURE 1 - DATA

REC PATIENT DIDATE

1 1001 01FEB2009

2 1001 02FEB2009

3 1001 04FEB2009

4 1001 06FEB2009

Here is the logic behind the program to be developed.

PRE-PROGRAM LOGIC

Overall point of using RETAIN for this example: By retaining previous date completed we can verify that the
previous entry was one day ago, i.e. a missed day is indicated where lapse is >1.

Main Steps:

• Create a RETAIN variable ‘XPREVDT’ that will hold the changing values of previous date.

• For the first occurrence of each PATIENT set the RETAIN variable to current DIDATE so the previous
PATIENT’s information does not carry forward.

• Determine days since previous diary entry (LAPSE).

• Reset XPREVDT to the current date to be used as previous date for the next observation.

Key:
REC = Record Number
PATIENT = Patient ID
DIDATE = Diary Entry Date

2

Below is the simple program that will count the gap in days between diary entries. Two variables will be created in the
program. XPREVDT, the RETAIN variable will hold the most recent diary date, and LAPSE will compute the
difference between current and most recent diary entry.

FIGURE 2 - PROGRAM

Log output created by PUT statements after each programming section (e.g., 1, 2A, 2B, 2C) provides a view of how
records are impacted at each step. In other words, with the PUT statements you can see the interim values of the
RETAIN variable XPREVDT. (In contrast the PROC PRINT would show only the final XPREVDT results, i.e. the Step
2A and 2C results).

WALKING THROUGH EXAMPLE 1:
FIGURE 3 LOG OUTPUT shows how records 1-4 in our data set process at each step of the above program. The
processing starts with Record 1 (REC 1). At Step 1, XPREVDT for REC 1 is set to missing. At Step 2A, REC 1’s
XPREVDT value is set = to DIDATE. Note that REC 1 is patient 1001’s first record so it follows through the ‘IF
FIRST.PATIENT’ program logic.

FIGURE 3 – LOG OUTPUT – Patient 1001

PROGRAM STATEMENT AND DESCRIPTION LOG OUTPUT

1 RETAIN XPREVDT;
Initialize XPREVDT to
missing REC=1 didate=01FEB2009 xprevdt=. lapse=.

2A

IF FIRST.PATIENT THEN
DO; XPREVDT=DIDATE;
END;

1st patient occurrence
- Reset XPREVDT to
DIDATE REC=1 didate=01FEB2009 xprevdt=01FEB2009 lapse=.

Starting with patient 1001’s REC=2, the records follow through the ‘ELSE’ (i.e. not FIRST.PATIENT) program logic.
For example at step 1 in the program, XPREVDT for REC 2 is not reset to missing and therefore maintains the
previous XPREVDT value of 01FEB2009 (until reset at 2C). After Step 2B, REC 2’s LAPSE shows a value of 1, the
difference between DIDATE and XPREVDT. After step 2C, XPREVDT is equal to DIDATE, just as the program
requested.

1 RETAIN XPREVDT;

Do not reinitialize
XPREVDT to
missing REC=2 didate=02FEB2009 xprevdt=01FEB2009 lapse=.

2B ELSE DO; IF NMISS…THEN Calculate lapse REC=2 didate=02FEB2009 xprevdt=01FEB2009 lapse=1

3

LAPSE=DIDATE-XPREVDT; ELSE
LAPSE=. END;

2C XPREVDT=DIDATE;
Reset XPREVDT
to DIDATE REC=2 didate=02FEB2009 xprevdt=02FEB2009 lapse=1

1 RETAIN XPREVDT;

Do not reinitialize
XPREVDT to
missing REC=3 didate=04FEB2009 xprevdt=02FEB2009 lapse=.

2B

ELSE DO; IF NMISS…THEN
LAPSE=DIDATE-XPREVDT; ELSE

LAPSE=. END; Calculate lapse REC=3 didate=04FEB2009 xprevdt=02FEB2009 lapse=2

2C XPREVDT=DIDATE;
Reset XPREVDT
to DIDATE REC=3 didate=04FEB2009 xprevdt=04FEB2009 lapse=2

1 RETAIN XPREVDT;

Do not reinitialize
XPREVDT to
missing REC=4 didate=06FEB2009 xprevdt=04FEB2009 lapse=.

2B

ELSE DO; IF NMISS…THEN
LAPSE=DIDATE-XPREVDT; ELSE
LAPSE=. END; Calculate lapse REC=4 didate=06FEB2009 xprevdt=04FEB2009 lapse=2

2C XPREVDT=DIDATE;
Reset XPREVDT
to DIDATE REC=4 didate=06FEB2009 xprevdt=06FEB2009 lapse=2

The above example shows how XPREVDT, the RETAIN variable changed as it was reset via assignment statements.
XPREVDT served as a temporary storing variable so that day lapse between current and previous date could be
calculated. For this example, any lapse >1 indicates a missed entry.

Following are key points associated with each section of the program (designated by the boxed numbers/letters).

KEY POINTS:
RETAIN XPREVDT; 1
(This statement could have been placed later in the program and had the same result)

The RETAIN initialization occurs only once, during compile time. This is in contrast to assignment
statements that are potentially executed for each record. For example, see REC 1 versus RECs 2, 3 and 4.
Only REC 1’s XPREVDT was initialized to missing as specified in the RETAIN statement. At REC 2, for
example, XPREVDT = 01FEB2009, the previous record’s DIDATE. This was the purpose of using RETAIN
for this example. We want XPREVDT to hold the previous record’s value so we can calculate time lapse,
rather than follow the default SAS behavior of resetting XPREVDT to missing at the beginning of the DATA
step for each new record.

2A IF FIRST.PATIENT THEN DO;
 XPREVDT=DIDATE;

 END;

The conditional assignment statement based on whether it is the patient’s first record resets the value of
XPREVDT to DIDATE. The purpose of this reset is to prevent one patient’s value from being carried
forward to the next patient. Because we have put the RETAIN in place, we need to explicitly re-initialize
XPREVDT every time a new patient is encountered.

2B ELSE DO;

 IF NMISS(DIDATE,XPREVDT)=0 THEN LAPSE = DIDATE - XPREVDT;
 ELSE LAPSE=.;

END;
This is the conditional assignment statement for records that are not the first occurrence for a patient. Now
that we have previous entry date (XPREVDT) on the same record as current date (DIDATE) we can
easily calculate the difference, LAPSE, between the two entry dates.

4

2C XPREVDT = DIDATE;

At step 2C we reset XPREVDT to capture the current DIDATE, which will become the next record’s
‘previous’ date. It is okay to reset XPREVDT at this point because LAPSE between current and previous
entry has already been calculated for observations where applicable (i.e. not FIRST.PATIENT).

EXAMPLE 2

WHAT HAPPENS WHEN RETAIN VARIABLES ARE NOT RESET?
While the answer seems obvious, forgetting to reset retained variables is a common mistake when learning to use the
RETAIN statement. FIGURE 4 contains the diary data used earlier, plus records for two additional patients.

FIGURE 4: DIARY DATA SET

REC PATIENT DIDATE
1 1001 01FEB2009

2 1001 02FEB2009

3 1001 04FEB2009

4 1001 06FEB2009

5 1002 17FEB2009

6 1002 18FEB2009

7 1002 19FEB2009

8 1003 12FEB2009

9 1003 16FEB2009

10 1003 19FEB2009

EXPLICIT RESETS
There are two explicit resets of the RETAIN variable XPREVDT in our program, 2A and 2C.

• Resets XPREVDT to DIDATE for each first occurrence of an patient in the data set

2A

 IF FIRST.PATIENT THEN
 DO;
 XPREVDT=DIDATE;
 END;

2C Applies to non-first occurrences of PATIENT and resets XPREVDT to DIDATE, AFTER lapse has been

calculated for the current observation.

XPREVDT = DIDATE;

It is useful to observe what happens when the resets are excluded. FIGURE 5 shows the final PROC PRINT
output when both resets are correctly included. FIGURES 6 and 7 respectively, display the results when resets 2A,
and 2C are excluded.

5

FIGURE 5 – CORRECT RESULTS WHEN BOTH RESETS (2A AND 2C) ARE IN PLACE
FINAL DATA - DIARY - ALL RESETS

REC patient didate LAPSE
1 1001 01FEB2009 .
2 1001 02FEB2009 1
3 1001 04FEB2009 2
4 1001 06FEB2009 2
5 1002 17FEB2009 .
6 1002 18FEB2009 1
7 1002 19FEB2009 1
8 1003 12FEB2009 .
9 1003 16FEB2009 4
10 1003 19FEB2009 3

FIGURE 6 – INCORRECT RESULTS WHEN RESET 2A IS NOT IN PLACE
FINAL DATA - DIARY - WITHOUT FIRST RESET

REC patient didate LAPSE
1 1001 01FEB2009 .

2 1001 02FEB2009 1
3 1001 04FEB2009 2
4 1001 06FEB2009 2
5 1002 17FEB2009 11
6 1002 18FEB2009 1
7 1002 19FEB2009 1
8 1003 12FEB2009 -7
9 1003 16FEB2009 4
10 1003 19FEB2009 3

LAPSE - Previous PATIENT’S values were
carried forward. For example, PATIENT
1001’s most recent entry 06FEB2009 was
subtracted from PATIENT 1002’s current date
17FEB2009 = 11 days.

FIGURE 7 – INCORRECT RESULTS WHEN RESET 2C IS NOT IN PLACE.
FINAL DATA - DIARY - WITHOUT SECOND RESET

1 1001 01FEB2009 .
2 1001 02FEB2009 1
3 1001 04FEB2009 3
4 1001 06FEB2009 5
5 1002 17FEB2009 .
6 1002 18FEB2009 1
7 1002 19FEB2009 2
8 1003 12FEB2009 .
9 1003 16FEB2009 4
10 1003 19FEB2009 7

LAPSE - XPREVDT is never reset after
FIRST.PATIENT record. E.g., All of 1001’s
LAPSES are based on current didate minus
01FEB2009. All of 1002’s LAPSES are based
on current didate minus 17FEB2009. All of
1003’s LAPSES are based on current didate
minus 12FEB2009.

CASES IN WHICH A VARIABLE IS AUTOMATICALLY RETAINED
The RETAIN statement is used for newly created variables, that is for variables read from a raw data set or created
newly by an assignment statement. The reason RETAIN is used with new variables is because these variables, by
default are initialized to missing at the beginning of each data loop and RETAIN is meant to counteract this behavior.
In contrast, there are several types of variables that are automatically retained. These include temporary array
variables (variables from arrays named _TEMPORARY_), automatic variables (e.g., _N_, _ERROR_) and SAS data
set variables (variables read from a SAS data set using SET, MERGE, UPDATE, and MODIFY). It would be
redundant to use the RETAIN statement in these cases where variables are automatically retained or in other words
are not initialized before each new observation is read. The following section discusses the initialization process for
NEW, and SAS data set variables. The reader can refer to the cited references for more detail on the other types of
automatically retained variables.

6

Here is a comparison of the Initialization process as it occurs for New Variables (WITHOUT a RETAIN statement)
(8A) versus SAS data set variables (8B).

INITIALIZATION PROCESS FOR…

A. Creating a NEW variable - In this case the variable is initialized to missing before EACH RECORD is read
(FIGURE 8A). NEW variables include variables input from RAW data sets and variables created in most
assignment statements. (There are exceptions such as assignments with the use of RETAIN or SUM statements
and DO loops.)

B. A SAS data set variable (i.e. called with SET, MERGE, UPDATE, MODIFY) - In this case the variable is
initialized to missing before the FIRST RECORD ONLY (FIGURE 8B).

FIGURE 8A FIGURE 8B
Raw Data Set / New Variable SAS Data Set* read with

SET, MERGE, UPDATE, or MODIFY

patient=. _N_=1 patient=. _N_=1

patient=1001 _N_=1 patient=1001 _N_=1

patient=. _N_=2 patient=1001 _N_=2

patient=1001 _N_=2 patient=1002 _N_=3

patient=. _N_=3 patient=1003 _N_=4

patient=1002 _N_=3

patient=. _N_=4

patient=1003 _N_=4

∗ FIGURE 8B NOTE: With A BY Statement – At beginning of each new BY value, variables are initialized to

missing (This process does not show in PUT statements but is demonstrated in FIGUREs 10A and 11A)

WHY IS THE INITIALIZATION PROCESS RELEVANT WHEN NO RETAIN STATEMENT IS
INVOLVED?

As mentioned earlier, SAS data set variables are automatically retained. Therefore, the need for resetting values may
become pertinent when values are not automatically being reset (or re-initialized). The example below (9A) shows
how unexpected results can occur when a user attempts to modify an existing SAS variable. Figures 9B and 9C show
work-arounds for this situation if it is necessary to use/modify the existing variable.

Both data sets ONE and TWO, below and are sorted by DAY. FIGURES 9A-9C below show different coding attempts
to accomplish the same result, which is to reassign FLAG a value of ‘N’ when TYPE = 2.

DATA ONE DATA TWO

DAY FLAG DAY TYPE

1 Y 1 3

2 Y 1 4

3 Y 2 2

2 4

3 1

3 2

3 1

7

Three programs (FIGUREs 9A, 9B, and 9C), and their corresponding PROC PRINT output are shown below. Note
that two coding options (9B, 9C) produce the correct result. In contrast, 9A provides incorrect results.
Three programs (FIGUREs 9A, 9B, and 9C), and their corresponding PROC PRINT output are shown below. Note
that two coding options (9B, 9C) produce the correct result. In contrast, 9A provides incorrect results.

WHICH ONE DOESN’T BELONG? WHICH ONE DOESN’T BELONG?

CONCATENATING DATA SETS

FIGURE 9A
No Reset

FIGURE 9B
Rename Original FLAG so FLAG

becomes a new variable

FIGURE 9C
Reinitialize variables with
New DATA Step Values

DATA THREE;
 SET ONE
 TWO;
 IF TYPE=2 THEN FLAG='N';
RUN;

DATA THREE;
 SET ONE(RENAME=(FLAG=OLDFLAG))
 TWO;
 IF TYPE=2 THEN FLAG='N';
 ELSE FLAG=OLDFLAG;
RUN;

DATA THREE;
 SET ONE
 TWO;
RUN;

DATA THREE;
 SET THREE;
 IF TYPE=2 THEN FLAG='N';
RUN ;

Obs DAY TYPE FLAG
1 1 . Y
2 2 . Y
3 3 3 . . Y Y
4 4 1 1 3 3
5 5 1 1 4 4
6 6 2 2 2 2 N N
7 7 2 2 4 4 N N
8 8 3 3 1 1 N N
9 9 3 3 2 2 N N

10 10 3 3 1 1 N N

What went wrong with 9A? The problem in 9A occurs when we attempt an assignment statement with FLAG,
which already exists in data set ONE. As mentioned above, other than for the first record, SAS data set variables are
automatically retained (not reset to missing) across iterations. Since FLAG was first read from data set ONE, its value
will be retained between iterations. When we set flag to ‘N’ when TYPE=2, because FLAG is a SAS variable the ‘N’
from the previous observation is retained; there are no FLAG values in TWO to overwrite it and it is never reset. Note
that even though a new assignment is being made FLAG is not a ‘new’ variable and the new variable rules do not
apply.

In contrast, 9B and 9C work because FLAG gets reset. In 9B, FLAG becomes a new variable because DATA ONE’s
FLAG gets renamed to OLDFLAG. The new variable rules now apply to FLAG, and FLAG gets reset to missing
before each observation. In 9C, when data set THREE is SET, each record of the data set now has a FLAG value,
some of which are missing but it is important to note that missing is a valid value. For example, when FLAG is set to
‘N’ in observation 6 it is overwritten by missing when observation 7 is read.

Obs DAY TYPE FLAG
1 1 . Y
2 2 . Y
3 3 . Y
4 1 3
5 1 4
6 2 2 N
7 2 4
8 3 1
9 3 2 N

10 3 1

CORRECT INCORRECT

8

WHAT ABOUT WITH A BY STATEMENT? WHAT ABOUT WITH A BY STATEMENT?

Examples of the initialization process during the SET BY (Interleaving) and MERGE process are shown below. (For a
detailed overview on these processes please see cited references). Recall that the first occurrence of the BY
value will be re-initialized but after the first BY value occurrence, SAS variables will be retained.

Examples of the initialization process during the SET BY (Interleaving) and MERGE process are shown below. (For a
detailed overview on these processes please see cited references). Recall that the first occurrence of the BY
value will be re-initialized but after the first BY value occurrence, SAS variables will be retained.

INTERLEAVING DATA SETS INTERLEAVING DATA SETS

FIGURE 10A
No Reset

FIGURE 10B
Rename Original FLAG so FLAG

becomes a new variable

FIGURE 10C
Reinitialize variables with
New DATA Step Values

DATA THREE;
 SET ONE
 TWO;
 BY DAY ;
 IF TYPE=2 THEN FLAG='N';

DATA THREE;
 SET ONE(RENAME=(FLAG=OLDFLAG))
 TWO;
 BY DAY ;

Obs DAY TYPE FLAG
1 1 . Y
2 1 3
3 1 4
4 2 . Y
5 2 2 N
6 2 4 N
7 3 . Y
8 3 1
9 3 2 N

10 3 1 N

Obs DAY TYPE FLAG
1 1 . Y
2 1 3
3 1 1 4 4
4 4 2 2 . . Y Y
5 5 2 2 2 2 N N
6 6 2 2 4 4
7 7 3 3 . . Y Y
8 8 3 3 1 1
9 9 3 3 2 2 N N

10 10 3 3 1 1

RUN;
 IF TYPE=2 THEN FLAG='N';
 ELSE FLAG=OLDFLAG;
RUN;

DATA THREE;
 SET ONE
 TWO;
 BY DAY ;
RUN;

DATA THREE;
 SET THREE;
 IF TYPE=2 THEN FLAG='N';
RUN ;

This reset of the first of each BY value can be seen in 10A and 11A results, where we gained one correct record over
9A. For example in the 10A PROC PRINT results, Observation 7 did not retain Observation 6’s ‘N’ because at the
first DAY 3 (BY variable) observation FLAG got reinitialized to missing. Likewise in 11A Observation 5 did not retain
Observation 4’s ‘N’ because at the first DAY 3 (BY variable) occurrence FLAG got reinitialized to missing. The rest of
the FIGURE 10 and 11 results are the same story as for the FIGURE 9 series. 10A leads to incorrect results and 10B
and 10C provide correct results for the same reasons as in the FIGURE 9 series. Likewise, 11A leads to incorrect
results and 11B and 11C provide correct results for the same reasons as in the FIGURE 9 series.

CORRECT INCORRECT

9

MERGING DATA SETS

FIGURE 11A
No Reset

FIGURE 11B
Rename Original FLAG so FLAG

becomes a new variable

FIGURE 11C
Reinitialize variables with
New DATA Step Values

DATA THREE;
 MERGE ONE
 TWO;
 BY DAY ;
 IF TYPE=2 THEN FLAG='N';
RUN;

DATA THREE;
 MERGE ONE(RENAME=(FLAG=OLDFLAG))
 TWO;

DATA THREE;
 MERGE ONE
 TWO;
 BY DAY ;
RUN;

DATA THREE;
 SET THREE;

 BY DAY ;
 IF TYPE=2 THEN FLAG='N';
 ELSE FLAG=OLDFLAG;
RUN;

 IF TYPE=2 THEN FLAG='N';
RUN ;

CONCLUSION

The RETAIN statement overrides the default process and prevents the value of a variable from being reinitialized to
missing at the beginning of the data loop. This allows for many additional capabilities, in particular manipulations
across observations. However, because by using the RETAIN statement we have turned off the automatic
reinitialization feature for the retained variable it is then necessary to explicitly reset the variable at times. In the case
of SAS variables read with SET, MERGE, UPDATE, AND MODIFY, variables are automatically retained. Attempting
to modify an existing SAS variable often requires the user to create a new variable or modify the variable in a
separate DATA step in order to avoid unwanted effects of the automatic retain.

Obs DAY TYPE FLAG Obs DAY TYPE FLAG
1 1 3 Y 1 1 3 Y
2 1 4 Y

REFERENCES
∗ 1 SAS Institute Inc. (2011) SAS® 9.2 Language Reference: Dictionary, Fourth Edition, Cary, NC: SAS

Institute Inc., Available at
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000214163.htm

∗ 2Jones, Robin and Whitlock, Ian (2002), Missing Secrets, Proceedings of the 2002 Southeast SAS Users
Group Conference, PS05.

∗ Gorrell, Paul (1999), The RETAIN Statement: One Window into the SAS® Data Step, Proceedings of the 1999
Northeast SAS Users Group Conference, BT064.

∗ Henderson, Don and Rabb, Merry (1988), The SAS Supervisor, Proceedings of the 1988 Northeast SAS
Users Group Conference.

∗ Lewis, Ginger and Whiteis, Grace (2010-2011), (SAS Technical Support) email correspondence

3 2 2 N
4 2 4 N
5 3 1 Y
6 3 2 N
7 3 1 N

2 1 4 Y
3 2 2 N
4 2 4 Y
5 3 1 Y
6 3 2 N
7 3 1 Y

INCORRECT CORRECT

10

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000214163.htm

11

∗ Virgile, Bob (1999), How MERGE Really Works, Proceedings of the 1999 Northeast SAS Users Group
Conference, AD155.

∗ Whitlock, Ian (1997), A SAS® Programmer's View of the SAS Supervisor, Proceedings of the 1997 SAS
Users Group International 22 Conference, Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS
The author would like to Carol Matthews, Paul Slagle, and Andrew Newcomer for their review of this paper and for
their continual mentoring. Thanks very much to Venky Chakravarthy for his feedback on how to improve this paper.
The author thanks the cited authors in the REFERENCES section for providing a good basis for understanding this
topic.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Lisa Fine
United Biosource Corporation
2200 Commonwealth Blvd., Suite 100
Ann Arbor, MI 48105
Work Phone: (734) 994-8940 x1616
Fax: (734) 994-8927
E-mail: lisa.fine@unitedbiosource.com
Web: www.unitedbiosource.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.unitedbiosource.com/

