
1

Random Effects vs. Marginal Models:
Different Approaches to Analyzing 
Repeated Measures / Longitudinal  

Data

Presented at
Midwest SAS Users Group

Kathy Welch
CSCAR, The University of Michigan

February 5, 2009



2

Background: 
What is a Linear Mixed Model 

(LMM)?
• A parametric linear model for

– Clustered data
– Repeated Measures / Longitudinal data

• Continuous response
• Predictors may be

– Fixed
– Random

• This presentation will focus on an analysis of a 
longitudinal data set.
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Repeated Measures / 
Longitudinal Data

• Longitudinal Data:
– Dependent variable measured multiple times for each 

unit of analysis, basically a type of repeated 
measures data

– Repeated measures factor is time
– Time may be over an extended period (e.g. years)

• Example
– Autistic children measured at different ages

• Dropout may be a problem
• Missing data at some time points may be a 

problem (not a problem if MAR)
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Example of Repeated Measures/ 
Longitudinal Data Structure

Level 2

(Subjects)

Level 1

(Repeated 
Measures)

Childid 2Childid 1

Age 2 years Age 3 years Age 9 yearsAge 2 years Age 5 years

•Each subject measured more than once 

•Number of measurements does not need to be equal for all subjects

•Spacing of intervals does not have to be equal for all   measurement  

times
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Fixed Factor 

• Fixed Factor: A categorical/classification variable  
– all levels of interest are included

• Treatment level
• Gender

• Levels of fixed factors can be defined to 
represent contrasts of interest 
– Female vs. Male
– High Dose vs. Control, Medium Dose vs. Control
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Random Factor

• Random Factor: A classification variable
– Levels can be thought of as being randomly sampled 

from a population
• Classroom
• Subject

• Variation in the dependent variable across levels of the 
random factor can be estimated and assessed

• Usually, random factors do not represent conditions 
chosen to meet the needs of the study

• Results can be generalized to a greater population
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Fixed Effects
• Also called regression coefficients or fixed-effect 

parameters
– Describe the relationship between the dependent 

variable and predictor variables for an entire 
population 

• Represented as unknown fixed quantities (β ) in 
a LMM
– The value of a given β does not vary across subjects

• β is estimated based on data
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Random Effects
• Random values associated with levels of a random 

factor
• Represented as random variables (ui for the ith subject)

in a LMM
– Specific to a given level of a random factor
– Vary across subjects

• Classroom-specific intercepts in a clustered design
• Subject-specific intercepts in a repeated measures design

• Usually describe random deviations in the relationships 
described by fixed effects

• Can be for categorical or continuous variables
– Random intercepts
– Random slopes
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General Specification of an LMM 
for the ith Subject:

{
fixed random

~ ( , )

~ ( , )

i i i i i

i

i i

N

N  

= + +

0
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14243
Y X Z u

u D

R

β ε

ε
Called a mixed model because it has a mix of fixed (β) and 
random (ui) effects.
Both D and Ri are variance-covariance matrices, and as such, are 
required to be positive-definite
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The D Matrix
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Variance-covariance matrix for the q random effects (ui)
for the ith subject. SAS calls this the G matrix and defines
it for all subjects, rather than for individuals.

For Example: If there were only one random effect per subject (e.g., 
a random intercept), then D would be a 1 X 1 matrix.
If there were two random effects per subject, e.g., a random 
intercept and a random slope, then D would be 2 X 2.
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Two Common Structures for D

2
1 1, 2

2
1, 2 2

u u u

u u u

σ σ
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Unstructured

type=un
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0
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i
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Var
σ

σ
= =
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D u
Variance 
components

type=vc

Note: In these examples, we have two random effects 
defined for each subject. The diagonal elements represent 
variances of the random effects; the off-diagonal elements 
represent covariances between the random effects

Many different structures for D are possible:
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The R Matrix
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Variance-covariance matrix for the ni residuals (εi)
for the ith subject

Note: The dimension of Ri depends on the number of observations (ni)
for subject i. For a subject with 5 repeated measures, the Ri matrix would 
be 5 X 5. 
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Some Commonly Used Structures for R
Unstructured
type = UN

Variance 
Components
type=VC

Compound Symmetry
type = CS

Banded
type = UN(2)
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First-order Autoregressive
type = AR(1)

Toeplitz Toeplitz (2)
type = Toep type = Toep(2)

Heterogeneous 
Compound Symmetry

type = CSH

Heterogeneous 1st-order                                     Heterogeneous Toeplitz
Autoregressive                                               type = Toeph

type = ARH(1)
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More structures for R
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Covariance Parameters

• We estimate a set of covariance 
parameters for the variance-covariance 
matrices, D and R.
– For D we estimate θD  

– For R we estimate θR 

• The number of covariance parameters that 
we estimate depends on the structure we 
specify for D and R.
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Marginal Model vs. LMM

• LMM uses random effects explicitly to 
explain between-subject variance
– Subject-specific model

• Marginal model does not use random 
effects in its specification at all
– Population-averaged model

• Implied marginal model
– Marginal model that results from fitting a LMM



17

A Strictly Marginal Model 
With no random effects

i i i
+=Y X ∗β ε

~ ( , )
i i

N V∗ε 0

i i
=V R

Vi is the marginal variance-covariance matrix for Yi
In this marginal model, we do not specify any random effects.
There is no G matrix in this model.
Covariances, and hence correlations, among residuals 
are specified directly through the Ri matrix
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Implied Marginal Distribution of Yi
Based on a LMM

~ ( , )
i i i i i

N   ′ +Y X Z DZ Rβ

( )
i i

E =Y X β

( ) .
i i i i i

Var ′= = +Y V Z DZ R
In the implied marginal model, Vi is formed from D and Ri, but 
whileVi is required to be positive-definite, D and Ri are not.
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Model Fit: 
Akaike Information Criteria (AIC)

• SAS calculates the AIC based on the (ML or 
REML) log likelihood, as shown below:

• The penalty is 2p, where p represents the total 
number of parameters being estimated for both 
the fixed and random effects.

• Can be used to compare two models fit for the 
same observations, models need not be nested.

• Smaller is better.

ˆ ˆ2 ( , ) 2AIC l p= − × +β θ
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Model Fit:
Bayes Information Criterion (BIC) 

• BIC applies a greater penalty for models with 
more parameters than does AIC.

• The penalty to the likelihood is number of 
parameters, p, times ln(n), where n is the total 
number of observations in the data set.

• Can be used to compare two models for the 
same observations, need not be nested.

• Smaller is better.

ˆ ˆ2 ( , ) ln( )BIC l p n= − × + ×β θ
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Repeated Measures / Longitudinal
Data Setup

• Data are in Long Form, one row for each repeated 
measurement on each subject

• Each row contains:
– Information on the repeated measurements

• Dependent variable
• Time-varying covariates to be included in the model

– Plus information on the subject / unit of analysis
• Unit / subject ID
• Time-invariant covariates to be included in the 

model
• These are repeated for each row of data for a 

subject
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Proc Mixed Syntax

• Model statement specifies the fixed factors and 
covariates in the model

• Random statement specifies the random effects 
to be included in the model, and specifies the 
structure of the D matrix of variances and 
covariances for the random effects (called G 
matrix by SAS)

• Repeated statement specifies the structure of 
the residual covariance matrix, R
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The Autism Data Set
• autism.csv This data set was derived from a 

study of 158 children with Autism Spectrum 
Disorder (Oti, Anderson, Lord, 2006).

• Measurements were made at five basic ages 
for each child: 2, 3, 5, 9, and 13 years. Not all 
children were measured at all time points. 

• We will analyze VSAE, a measure of 
socialization, for these children as a function of 
their expressive skills (SICDEGP) measured at 
baseline (time invariant), and their current age 
(time-varying).
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Structure of Autism.csv data set
age,vsae,sicdegp,childid
2,6,3,1
3,7,3,1
5,18,3,1
9,25,3,1
13,27,3,1
2,17,3,3
3,18,3,3
5,12,3,3
9,18,3,3
13,24,3,3
2,12,3,4
3,14,3,4
5,38,3,4
9,114,3,4

Obs childid age          sicdegp

1               1               2               3
2               1               3               3
3               1               5               3
4               1               9               3
5               1              13               3
6               3               2               3
7               3               3               3
8               3               5               3
9               3               9               3

10               3              13               3
11               4               2               3
12               4               3               3
13               4               5               3
14               4               9               3
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Plots of VSAE Over Time for Each 
Child by Baseline Expressive 

Language Group
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Proc Sgpanel code for Individual 
line Graphs (SAS 9.2)

proc sgpanel data=autism;
panelby sicdegp /columns=3;
series x=age y=vsae / group=Childid

markers  legendlabel=" " lineattrs=(pattern=1 color=black);
run;

The statistical graphics in SAS 9.2 are terrific. I’m still 
experimenting. 

To get help, go to “SAS Help and Documentation”….SAS 
Products…SAS/Graph…Statistical Graphics Procedures.
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Location of .png file from Sgpanel

Graph is in 
results 
window, 
not Graph 
window. 

Graph will be saved in default folder as a .png file
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Mean Profiles by SICD Group
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SAS Sgplot Code for Mean Plots 
by SICD Group

proc sort data=autism;
by sicdegp age;
run;
proc means data=autism noprint;
by sicdegp age;
output out=meandat mean(VSAE)=mean_VSAE;

run;
data autism2;
merge autism meandat(drop=_type_ _freq_);
by sicdegp age;

run;
proc sgplot data=autism2;
series x=age y=mean_VSAE / group=SICDEGP;
scatter x=age y=VSAE ;

run;
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Discussion of Plots

• There is substantial variation in VSAE scores 
between children, and this variation gets larger 
over time.

• Although some children’s scores do not seem to 
increase, there is a generally increasing trend in 
the means of VSAE over time in all three SICD 
groups.

• It looks like there may be a quadratic trend in 
mean VSAE scores, especially in group two.
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Modeling Strategy

• We first attempt to fit a LMM with 3 random 
effects for each subject: a random intercept, 
random slope for AGE, and random quadratic 
effect of AGE.
– This is known as a random coefficients, growth-curve, 

or Laird-Ware Model
• We then fit an implied marginal model, in which 

we relax constraints on the variance-covariance 
matrices, D and Ri

• Finally, we fit a strictly marginal model.
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LMM with Random Child-Specific 
Intercepts, Slopes and Quadratic 

Effects
0 1 2 3

4 5

6 7

8

VSAE AGE_2 AGE_2SQ SICDEGP1

SICDEGP2 AGE_2 SICDEGP1

AGE_2 SICDEGP2 AGE_2SQ SICDEGP1

AGE_2SQ SICDEGP2

ti ti ti i

i ti i

ti i ti i

ti i

                                 

β β β β

β β

β β

β

= + + +

+ +

+ +

+

⎫
⎪× × × ⎪⎪× × × ⎬
⎪× × × × ⎪
⎪× × + ⎭

LMM:

 fixed

}0 1 2
AGE_2 AGE_2SQ

i i ti i ti ti
       u u u ε+ + +× × random

We include the fixed effects of AGE, AGE-Squared, SICDEGP, and 
interactions between AGE, AGE-Squared and SICDEGP.

We also include three random effects for each child: the intercept (u0i), 
the linear slope of AGE (u1i), and the quadratic effect of AGE (u2i), to 
capture between-child variability.
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SAS Code for LMM

proc mixed data=autism2;
class childid sicdegp;
model vsae = age_2 age_2sq sicdegp age_2*sicdegp

age_2sq*sicdegp / solution ddfm=sat;
random int age_2 age_2sq 

/ subject=childid type=un g v ;
run;
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Distribution of Random Effects for 
the LMM
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int int,age int,age-squared
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⎜ ⎟
⎜ ⎟
⎝ ⎠

D

We specify an unstructured D matrix for the random effects. There are 
6 covariance parameters in the D matrix for the 3 random effects. 

Note: There is no R matrix specified for this model, so R is assumed to 
be σ2I

2~ (0, )ti N σε
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LMM: Problem with G Matrix
SAS reports problems fitting Model 6.1.  We see the following note in 
the SAS log:

NOTE: Convergence criteria met.

NOTE: Estimated G matrix is not positive definite.

NOTE: Asymptotic variance matrix of covariance parameter estimates has 
been found to be singular and a generalized inverse was used. Covariance 
parameters with zero variance do not contribute to degrees of freedom 
computed by DDFM=SATTERTH.

We have a problem with the G matrix (referred to as the D matrix in this 
presentation). We need to investigate this problem.
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LMM: SAS Output for G Matrix

We see that the value in 
the G matrix 
corresponding to the 
variance of the random 
intercepts is blank here.

0.1664-0.63530.56691age_2sq3

-0.635314.03000.61711age_22

0.56690.61711Intercept1
Col3Col2Col1childidEffectRow

Estimated G Matrix
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Fit the Implied Marginal Model

We now refit the model

Use the nobound option, to get the implied marginal model,

Positive definiteness constraints on G and R are relaxed. 

proc mixed data=autism2  nobound;
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Look at Unconstrained G Matrix

The new estimate of the variance of the random 
intercepts is negative!

Clearly, this LMM is not working, as a negative variance 
is impossible!

0.1383-0.40380.14231age_2sq3

-0.403811.96734.27601age_22

0.14234.2760-10.54061Intercept1
Col3Col2Col1childidEffectRow

Estimated G Matrix
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Revised LMM: Remove the 
Random Intercept

proc mixed data = autism2;
class childid sicdegp;
model vsae = sicdegp age_2 age_2sq age_2*sicdegp

age_2sq*sicdegp / 
solution ddfm=sat influence;

random age_2 age_2sq /
subject = childid solution g v vcorr type = un;

run;

Note: the only change in the model is that “int” has been deleted from 
the random statement.
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G Matrix for Revised LMM 
without Random Intercept

0.1315-0.44011age_2sq2

-0.440114.66741age_21

Col2Col1childidEffectRow

Estimated G Matrix

There are no error messages in the log. 

The 2x2 G matrix is positive-definite.

38.4988Residual

0.1315childidUN(2,2)

-0.4401childidUN(2,1)

14.6674childidUN(1,1)

EstimateSubjectCov Parm

Covariance Parameter Estimates
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V Matrix for the Revised LMM

2566.531298.89423.87119.165

1298.89770.95273.5784.46874

423.87273.57157.3939.90433

119.1684.468739.904352.41752

38.49881
Col5Col4Col3Col2Col1Row

Estimated V Matrix for childid 1

The only variability in the intercept 
is the estimated residual variance.

There is no covariance between 
the Y values at baseline with 
any other ages
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Alternative Marginal Model

proc mixed data=autism2 noclprint;
class childid sicdegp age;
model vsae = sicdegp age_2 age_2sq age_2*sicdegp

age_2sq*sicdegp
/ solution ddfm=bw;

repeated age / subject=childid type=un r rcorr;
run;

Proc Mixed syntax for the marginal model:

Note: there is no random statement in this model, and hence, 
the G matrix = 0.

The repeated statement specifies that the R matrix should be 
unstructured. 
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Marginal Model: R Matrix
Note: This R matrix shows positive covariance, and hence, positive 
correlation, between residuals at baseline and later ages.

Again, the variance increases at each time point, as was apparent in the 
initial graphs, and in the LMM.

2181.671153.08368.95186.8843.33425

1153.08810.49194.0894.326524.62434

368.95194.08141.3955.53138.32513

186.8894.326555.531354.56048.85842

43.334224.62438.32518.858410.82231

Col5Col4Col3Col2Col1Row

Estimated R Matrix for childid 1
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Model Fit Comparison

4505.4 4635.54635.1BIC

4459.54623.34616.7AIC

Marginal 
Model

Revised LMM minus 
random interceptFull LMM

From this comparison, the marginal model is preferable 
to the two LMMs for this data set. It has the smallest AIC 
and BIC. 
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Summing Up
• The ability to fit a wide array of different 

covariance structures gives Proc Mixed a lot of 
flexibility

• By examining the G matrix, R matrix and V 
matrix we can see how different structures affect 
the model covariance parameters.

• A LMM may not always be the best choice. 
• At times, a marginal model may give a better fit.
• Research goals can help in the choice of the 

“right” modeling approach.
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