
Jay Iyengar, Data Systems Consultants LLC

Michigan SAS Users Group – February 22, 2024

Standard ways of measuring efficiency

• Processing time

• Input/Output (I/O)

• Memory

• Storage space

Alternate ways of measuring efficiency

• Code Development time\Maintenance time

• Processing time- CPU time, Real time

• Memory - RAM in Bytes (KB/MB/GB)

• Storage Space - Filesize in Bytes (KB/MB/GB)

• Input/Output (I/O) – Hard to measure

• Code Development time\Maintenance time – Lines of code

DATA STEP IF-THEN
Logic used for
Recoding Variables

Data TESTING2;

 Length Age_Group $8;

 Set TESTING;

 Age = Round((Today()-BirthDate_Text__c)/365.25, 1);

 If _N_<=20 Then Put Age=;

 /* Create age group variables for Age Cohorts */

 If 0<=Age<=9 Then age_group="0-9";

 If 10<=Age<=19 Then age_group="10-19";

 If 20<=Age<=29 Then age_group="20-29";

 If 30<=Age<=39 Then age_group="30-39";

 If 40<=Age<=49 Then age_group="40-49";

 If 50<=Age<=59 Then age_group="50-59";

 If 60<=Age<=69 Then age_group="60-69";

 If 70<=Age<=79 Then age_group="70-79";

 If 80<=Age<=89 Then age_group="80-89";

 If 90<=Age<=99 Then age_group="90-99";

 If Age>=100 Then age_group="100+";

 If Age=. Then age_group="Unknown";

Run;

Data TESTING2;

 Length Age_Group $8;

 Set TESTING;

 Age = Round((Today()-BirthDate_Text__c)/365.25, 1);

 If _N_<=20 Then Put Age=;

 /* Create age group variables */

 If 0<=Age<=9 Then age_group="0-9";

 Else If 10<=Age<=19 Then age_group="10-19";

 Else If 20<=Age<=29 Then age_group="20-29";

 Else If 30<=Age<=39 Then age_group="30-39";

 Else If 40<=Age<=49 Then age_group="40-49";

 Else If 50<=Age<=59 Then age_group="50-59";

 Else If 60<=Age<=69 Then age_group="60-69";

 Else If 70<=Age<=79 Then age_group="70-79";

 Else If 80<=Age<=89 Then age_group="80-89";

 Else If 90<=Age<=99 Then age_group="90-99";

 Else If Age>=100 Then age_group="100+";

 Else If Age=. Then age_group="zPending further info";

Run;

Use ELSE Keyword in
IF-THEN Logic

ELSE Condition
only processed if
prior condition is
false

DATA NDF_MD1;

 SET NEWFILE.NDF;

 IF STATE = 'MD';

 RUN;

NOTE: There were 1048575 observations read from the data

set NEWFILE.NDF.

 DATA NDF_MD2;

 SET NEWFILE.NDF;

 WHERE STATE = 'MD';

 RUN;

NOTE: There were 22518 observations read from the data set

NEWFILE.NDF. WHERE STATE='MD';

WHERE and IF
statement/options

WHERE is more
efficient than IF

Place IF statement at the top of the DATA STEP

 DATA MedU16;

 SET MedUtiliz16;

 IF CITY=’Bethesda’;

 IF PROVIDER_CITY=’Baltimore’ THEN PROVIDER_STATE=’MD’;

 ELSE IF PROVIDER_CITY=’Arlington’ THEN PROVIDER_STATE=’VA’;

 IF BILLTYPE = 13 THEN BILLTYPEDSC = ‘Hospital Outpatient’;

 ELSE IF BILLTYPE = 11 THEN BILLTYPEDSC = ‘Hospital Inpatient’;

 ELSE IF BILLTYPE = 33 THEN BILLTYPEDSC = ‘Home Health Agency’;

 RUN;

An Index is a file which is attached to a data set.

Indexes directly access observations and bypass
sequential processing.

 412 Proc Datasets Library=Work;

 413 Modify Testing;

 414 Index Create STATUS / NOMISS;

 NOTE: Simple index Status has been defined.

 415 Quit;

 NOTE: MODIFY was successful for WORK.TESTING.DATA.

 NOTE: PROCEDURE DATASETS used (Total process time):

 real time 20.87 seconds

 cpu time 14.37 seconds

Data Testing_Subset_ac;

 Set Testing

 (Where=(STATUS='Administratively Converted'));

Run;

NOTE: There were 66836 observations read from the

data set WORK.TESTING.

 WHERE STATUS='Administratively Converted';

NOTE: The data set WORK.TESTING_SUBSET_AC has 66836

observations and 67 variables.

NOTE: DATA statement used (Total process time):

 real time 3.80 seconds

 cpu time 1.03 seconds

Data Testing_Subset;

 Set Testing

 (Where=(STATUS='Administratively Converted'));

Run;

NOTE: There were 66836 observations read from the data set

WORK.TESTING.

 WHERE STATUS='Administratively Converted';

NOTE: The data set WORK.TESTING_SUBSET has 66836

observations and 67 variables.

NOTE: DATA statement used (Total process time):

 real time 21.93 seconds

 cpu time 12.68 seconds

Indexes reduce processing time and CPU Time

▪ Limit the number of observations on large data sets

▪ OBS= Global and data set option

▪ Execute your code without reading in any observations.

 OPTIONS OBS=0;

▪ Read in small sample of observations.

 OPTIONS OBS=1000;

Run multiple tests using different sample sizes

 OPTIONS OBS=10000;

 OPTIONS OBS=100000;

Use FIRSTOBS= with OBS= to read from the middle and
end of the data set.

 OPTIONS FIRSTOBS=500000 OBS=10000;

 OPTIONS FIRSTOBS=990000 OBS=10000;

Data DeathsDemo2;

 Set DeathsDemo;

 Keep ALF Age Any_Cong_Setting Case County Date_of_Birth

 Date_of_Death Epi_Report_Date Ethnicity Facility_Name

 First_Name GH Intake_LTCF_NH Last_Name Location_Name

 Location_Type Notes Number Race Sex Staff_or_Resident

 Town ZCTA_D;

run;

Data DeathsDemo2;

 Set DeathsDemo

 (Keep=ALF Age Any_Cong_Setting Case County Date_of_Birth

 Date_of_Death Epi_Report_Date Ethnicity Facility_Name

 First_Name GH Intake_LTCF_NH Last_Name Location_Name

 Location_Type Notes Number Race Sex

 Staff_or_Resident Town ZCTA_D);

run;

KEEP / DROP statements/options used to select variables

▪ KEEP/ DROP input data set option

▪ KEEP statement and output data set option

Input data set PDV Output data set

KEEP= / DROP=

Input data set PDV Output data set

KEEP / DROP

Use KEEP= instead of KEEP statement

Data set 1

VAR1 VAR2 VAR3

Data set 1

VAR1 VAR2 VAR3

Data set 2

VAR1 VAR2 VAR3

Data set 2- m

VAR1 VAR2 VAR3

DATA STEP PROC APPEND

Concatenating–
Stacking/ Appending

Multiple methods for
concatenating SAS data sets

DATA STEP SET Statement

PROC APPEND

Data NDF_DSC;

 Set NDF_1994

 NDF_1995;

Run;

NOTE: There were 515155 observations read from the data set NDF_1994.

NOTE: There were 533420 observations read from the data set NDF_1995.

NOTE: DATA statement used (Total process time):

 real time 50.36 seconds

 cpu time 5.44 seconds

Proc Append Base=NDF_1994 Data=NDF_1995;

Run;

NOTE: Appending NDF_1995_AFTER to NDF_1994.

NOTE: There were 533420 observations read from the data set NDF_1995.

NOTE: 533420 observations added.

NOTE: PROCEDURE APPEND used (Total process time):

 real time 27.33 seconds

 cpu time 2.80 seconds

PROC APPEND reads
less data and is more
efficient.

Use PROC APPEND
to concatenate SAS data
sets

▪ Horizontal as opposed to vertically combining data sets.

▪ Merging and joining data sets aka table lookups.

▪ DATA STEP Merge, PROC SQL Join, Hash Tables

▪ Different methods process merge differently.

Proc Sort Data = Gdelt.Gdelt_All Out=Gdelt_All;

 By EventCode;

Proc Sort Data = Gdelt.Cameo_Event_Codes

 Out = Cameo_event_codes Nodupkey;

 By CameoEventCode;

Run;

NOTE: PROCEDURE SORT used (Total process time):

 real time 14.31 seconds

 cpu time 12.60 seconds

Data Gdelt_All_V2;

 Merge Gdelt_All(IN=A)

 Cameo_event_codes

 (Rename=(CameoEventCode=EventCode) IN=B);

 By EventCode;

 If A and B;

Run;

NOTE: DATA statement used (Total process time):

 real time 37.56 seconds

 cpu time 4.57 seconds

Proc Sql;

 Create Table gdelt_All_V2 as

 Select A.*, B.EventDescription

 From Gdelt.Gdelt_All as A,

 Gdelt.Cameo_Event_Codes as B

 Where A.EventCode=B.CameoEventCode;

Quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 14.56 seconds

 cpu time 6.46 seconds

PROC SQL Join sorts data implicitly

Avoids PROC SORT

DATA STEP Merge usually requires PROC SORT

data ridoc4;

 merge SF1 (in=a) LL1 (in=b);

 by IDL_FirstName IDL_LastName IDL_DOB collection_date;

 format match $50.;

 if a and b then match="Both";

 if a and not b then match="SF Only";

 if b and not a then match="Linelist Only";

run;

data ridoc5 discrep SF2 LL2;

 set ridoc4;

 If match="Both" & ((IDL_CF_RorE in ("Resident","Unknown") & LL_RorE="Resident")

 OR IDL_CF_RorE in ("Employee","Unknown") & LL_RorE="Employee")) then output ridoc5;

 else if match="Both" then output discrep;

 else if match="SF Only" then output SF2;

 else If match="Linelist Only" then output LL2;

run;

Each DATA STEP involves reading & writing of data

Data ridoc4 discrep SF2 LL2;

 Merge SF1 (in=a) LL1 (in=b);

 By IDL_FirstName IDL_LastName IDL_DOB collection_date;

 If A and B and

 ((IDL_CF_RorE in ("Resident","Unknown") and LL_RorE="Resident") Or

 (IDL_CF_RorE in ("Employee","Unknown") AND LL_RorE="Employee")) then Output ridoc4;

 Else If A and B then Output discrep;

 Else If A and not B then output SF2;

 Else If B and not A then output LL2;

Run;

Fewer DATA STEPS means fewer data sets are created and stored.

Combining DATA STEPS results in reduced reading\writing of data.

▪ Compression eliminates empty space in the variables in
your data set., i.e. missing values.

OPTIONS COMPRESS=BINARY;

▪ Compression reduces data set size, and minimizes
storage space requirements.

 OPTIONS COMPRESS=NO;

▪ Overhead required to read compressed data sets.

▪ Advanced knowledge of efficiency and code
optimization techniques is valuable.

▪ Programmers can measure most computing resources,
CPU, memory, storage space.

▪ Perform testing to determine most efficient methods in
your computing environment.

Feel free to contact me with any questions you have about my talk.

Jay Iyengar, Director

Data Systems Consultants LLC

Email: datasyscon@gmail.com

https://www.linkedin.com/in/datasysconsult/

mailto:Datasyscon@gmail.com

	Slide 1: Best Practices for Efficiency and Code Optimization in SAS programming
	Slide 2: Introduction
	Slide 3: Metrics used to measure efficiency
	Slide 4: Conditional Logic
	Slide 5: Conditional Logic (con’t)
	Slide 6: Subsetting –WHERE and IF
	Slide 7: Subsetting –WHERE/IF (con’t)
	Slide 8: Using Indexes
	Slide 9: Using Indexes (con’t)
	Slide 10: Testing Code
	Slide 11: Testing Code
	Slide 12: Keep and Drop
	Slide 13: Keep and Drop
	Slide 14: Concatenating data sets
	Slide 15: Concatenating data sets (con’t)
	Slide 16: Merging data sets
	Slide 17: Merging data sets (con’t)
	Slide 18: Minimizing passes through the data
	Slide 19: Minimizing passes of the data (con’t)
	Slide 20: Data set compression
	Slide 21: Conclusion
	Slide 22

