Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Using Macro Variable Lists to Create
Dynamic Data-Driven Programs

JOSHUA M. HORSTMAN
NESTED LOOP CONSULTING
SEPTEMBER 28, 2023

Introduction

= The term “macro variable list” refers to a way of using macro
variables, not a distinct language element.

= Macro variables are used to store a series of values dynamically,
typically originating from our data.

= Macro variable lists allow us to:
= Build dynamic programs
= Create data-driven programming logic
= Eliminate hard-coded data dependencies
= Confuse our co-workers and ensure job security!
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Macro Processing: A Gross Simplification

= When a SAS program is submitted:
= Word scanner parses statements into tokens.

= Tokens are sent to compiler for syntax checking.
= Execution occurs when step boundary is reached.

= |f the word scanner detects macro triggers (% or &):
= Macro elements routed to macro processor.
= Macro variables resolved and macro statements executed.

= Qutput from macro processor must be rescanned for
additional macro language elements.
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Diagram courtesy of Art Carpenter.
Used with permission.

Creating Macro Variables using %LET

= Assigning a value to a macro variable:

%let output path = C:\temp;

= Subsequent references to macro variable replaced with value by
macro processor:

filename myfile "&output path\myfile.txt";
becomes

filename myfile "C:\temp\myfile.txt";
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| Height Weight |

Name [Sex|  Age
1 Alfred M 14 69 125
2 Alice F 13 56.5 84

Limitations of %LET —zfa= -

= Macro processor assigns value before SAS code executes.
This will not have
the desired effect.

data _null ;
set sashelp.class;
where name='Alfred';

%let alfred age = age;

run;
* Macro variable alfred age is literally assigned the value "age".

= SAS compiler only sees this: data _null _;
set sashelp.class;

where name='Alfred';

run,
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Creating Macro Variables at
Execution Time using the DATA step

= SYMPUTX routine assigns macro variable values during DATA step

Macro variable
name

data null ;
set sashelp.class;
where name='Alfred';
call symputx("alfred age", age);

run;
Value to be

assigned

= Macro variable alfred age will be
assigned the value "14".
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Creating Macro Variables at
Execution Time using PROC SQL

= INTO clause assigns macro variable values during PROC SQL:
proc sgl noprint; Value to be
select age assigned
into :alfred age
from sashelp.class name
where name='Alfred';
quit;

= Macro variable alfred age will be
assigned the value "14".
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Horizontal vs. Vertical
Macro Variable Lists

= Horizontal list: a list of values in a single macro variable

%let origin list = Asia Europe USA;
= Choose your delimiter carefully:
%let origin list = Asia~Europe~USA;

= Vertical list: a separate macro variable for each item
%let originl = Asia;
%$let origin2 = Europe;
%let origin3 = USA;

= We want to create these dynamically, not by hard-coding!

11
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Creating a Vertical Macro Variable List
Using the DATA Step

proc sort data=sashelp.cars

out=unique_origins (keep=origin) nodupkey;

by origin; 11 Zput _user_;
run: GLOBAL NUMORIGINS 3
’ GLOBAL ORIGIN1 Asia
GLOBAL ORIGIN2 Europe
data null ; GLOBAL ORIGIN3 USA

set unique_origins end=eof;
call symputx(cats('origin', n ) ,origin);
if eof then call symputx('numorigins', n );

run,

12
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Creating a Horizontal Macro Variable List
Using the DATA Step

data null ;
set unique_origins end=eof;
length origin list $200;

retain origin_list;
origin list = catx('~',origin list,origin);
if eof then do;
call symputx('origin list',origin list);
call symputx('numorigins', n );
end;
30 Zput _user_;

run; GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia“Europe”USA

13
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Creating a Vertical Macro Variable List
Using PROC SQL

proc sql noprint;

select distinct origin into :originl-
from sashelp.cars
order by origin;

%let numorigins = &sqlobs;
. 11 Zput _user_;
quit; GLOBAL NUMORIGINS 3
GLOBAL ORIGIN1 Asia
GLOBAL ORIGIN2 Europe

GLOBAL ORIGIN3 USA
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Creating a Horizontal Macro Variable List
Using PROC SQL

proc sql noprint;

select distinct origin
into :origin list separated by '~'
from sashelp.cars
order by origin;
%let numorigins = &sqlobs;
quit;

30 Zput _user_;
GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia”Europe”USA
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30 Zput _user_;
GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia“Europe”USA

Using Horizontal Macro Variable Lists

= Access individual list elements using %SCAN function:

%$scan(&origin list,1,~) > Resolvesto: Asia
%$scan(&origin list,2,~) > Resolvesto: Europe
%$scan(&origin list,3,~) > Resolvesto: USA

= Use loop counter as index for %SCAN function:

%do i = 1 %to &numorigins;
$put Item &i: %$scan(&origin_list,&i,~);
%$end;

Item 1: Asia
Item 2: Europe
Item 3: USA
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Using Vertical Macro Variable Lists

= Access individual list elements using macro variable reference:

.. . . 1 Zput _user_;
&orJ_.gJ_.nl - Resolves to: Asia GLOBAL NUMBR & 1N 3
&origin3 - Resolvesto: USA GLOBAL ORIGIN2 Europe

GLOBAL ORIGIN3 USA
= Cannot use &originé&i

= Macro processor interprets this as two macro variable references:

= Macro variable origin does not exist.

18
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Using Vertical Macro Variable Lists

" |nstead, use &&originé&i.

Original: &&originé&i
lstpass: &originl
2nd pass: Asia

= Useinaloop:

%do i = 1 %to &numorigins;
gput Item &i: &&originé&i;
$end;

19

(&& resolves to &, origin is just text, &i resolves to 1)
(resolved value of macro variable originl)

Item 1: Asia
Item 2: Europe
Item 3: USA
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Example #1:
Splitting a Data Set (1 of 2)

proc sql noprint;
select distinct origin into :originl-

from sashelp.cars;

quit;

gmacro split data; GOAL: Split SASHELP.CARS

into a separate data set for
each value of ORIGIN.

Create a vertical
$let numorigins = &sqlobs; CAEEE variable list
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Example #1:
Splitting a Data Set (2 of 2)

data cars_&&originé&i;
set sashelp.cars;

where origin = "&&originé&i";

run; Generate a DATA step to
%end; create corresponding subset.

gmend split data;

%do i = 1 %to &numorigins; Loop through each value.
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Contents of "Worlk'

Example #1:
The RESUlt Cia Carpe

NOTE:

NOTE:
NOTE:

NOTE:

NOTE:
NOTE:

NOTE :

NOTE:
NOTE:

There were ISB observations read from the data set SASHELP.CARS.
WHERE origin="Asia’;

The data set WORK.CARS _ASIA has 158 observations and 15 variables.
DATA statement used (Total process time):

real time 0.10 seconds

cpu time 0.03 seconds

There were |23 observations read from the data set SASHELP.CARS.
WHERE origin='Europe’;

The data set WORK. EHRS _EUROPE has 123 observations and 15 variables.
DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.03 seconds

There were l4? ohservatluns read from the data set SASHELP.CARS.
WHERE or igin='USA

The data set WORK. CﬁHS_USﬁ has 147 observations and 15 variables.
DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

Cars_usa

23
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Example #2:
Dynamic Report Creation (1 of 2)

gmacro graph stocks;

proc sql noprint;

select distinct stock

into :stock list separated by '~'

from sashelp.stocks;

%let numstocks = &sqglobs;

quit;
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24

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

12



Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Example #2:
Dynamic Report Creation (2 of 2)

$do 1 = 1 %to &numstocks;

ods pdf file="%scan(&stock list,&i,~) .pdf";
proc sgplot data=sashelp.stocks;
where stock = "$scan(&stock_list,&i,~)";

highlow x=date high=high low=low;

run;
ods pdf close;
%end;

smend graph stocks;

25
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Example #2:
The Result
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Example #3:
Comparing Multiple Data Sets (1 of 2)

$macro compare all(libl,1lib2);
proc sql noprint;

select distinct a.memname into :dsl-
from dictionary.tables a, dictionary.tables b
where a.libname = upcase("&libl")
and b.libname = upcase("&lib2")
and a.memname = b.memname and a.memtype = "DATA";

|

%let numds = &sqlobs;
quit; [

27
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Example #3:
Comparing Multiple Data Sets (2 of 2)

$do i = 1 %$to &numds; [ }

proc compare

base = &libl. . &&dsé&i

compare = &lib2..&&dsé&i;
run;
%end;

$mend compare all;

28
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Example #3:

The Result
S

Contents of Newdata'

Cars Class

Shoes Stocks

55

NOTE:

NOTE :
NOTE :
NOTE :

NOTE:
NOTE:
NOTE :

NOTE :
NOTE :
NOTE :

%compare_all(olddata,newdata)

PROCEDURE SQL used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

There were 428 observations read from the data set OLDDATA.CARS.
There were 428 observations read from the data set NEWDATA.CARS.

PROCEDURE COMPARE used (Total process time):
real time 0.05 seconds
cpu time 0.01 seconds

There were 19 observations read from the data set OLDDATA.CLASS.
There were 19 observations read from the data set NEWDATA.CLASS.

PROCEDURE COMPARE used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

There were 699 observations read from the data set OLDDATA.STOCKS.
There were 699 observations read from the data set NEWDATA.STOCKS.
PROCEDURE COMPARE used (Total process time):

real time 0.06 seconds

cpu time 0.03 seconds

29
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Conclusion

= Avoid hard-coding

= Advantages:

= Easier to maintain

IC

= Macro variable lists are a powerful tool.

= Use them to build robust programs:
= Include dynamic logi

= Adapt to changes in data or computing environment

= Less likely to require change

= Greater potential for reuse
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