Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Using Macro Variable Lists to Create
Dynamic Data-Driven Programs

JOSHUA M. HORSTMAN
NESTED LOOP CONSULTING
SEPTEMBER 28, 2023

Introduction

= The term “macro variable list” refers to a way of using macro
variables, not a distinct language element.

= Macro variables are used to store a series of values dynamically,
typically originating from our data.

= Macro variable lists allow us to:
= Build dynamic programs
= Create data-driven programming logic
= Eliminate hard-coded data dependencies
= Confuse our co-workers and ensure job security!

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 1

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Macro Processing: A Gross Simplification

= When a SAS program is submitted:
= Word scanner parses statements into tokens.

= Tokens are sent to compiler for syntax checking.
= Execution occurs when step boundary is reached.

= |f the word scanner detects macro triggers (% or &):
= Macro elements routed to macro processor.
= Macro variables resolved and macro statements executed.

= Qutput from macro processor must be rescanned for
additional macro language elements.

4

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

Using Macro Variable Lists to Create Michigan SAS Users Group Conference

Dynamic Data-Driven Programs 9/28/2023
SAS program
code submitted
for execution
Macro Macre
statements [— referances
axeculed resolved
Contains —
macro references Macro Facility ‘
(& or %)7? YES invoked

Step is compiled >

Step is executed
ar parsad

Diagram courtesy of Art Carpenter.
Used with permission.

Creating Macro Variables using %LET

= Assigning a value to a macro variable:

%let output path = C:\temp;

= Subsequent references to macro variable replaced with value by
macro processor:

filename myfile "&output path\myfile.txt";
becomes

filename myfile "C:\temp\myfile.txt";

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 3

Michigan SAS Users Group Conference

Using Macro Variable Lists to Create
9/28/2023

Dynamic Data-Driven Programs

| Height Weight |

Name [Sex| Age
1 Alfred M 14 69 125
2 Alice F 13 56.5 84

Limitations of %LET —zfa= -

= Macro processor assigns value before SAS code executes.
This will not have
the desired effect.

data _null ;
set sashelp.class;
where name='Alfred';

%let alfred age = age;

run;
* Macro variable alfred age is literally assigned the value "age".

= SAS compiler only sees this: data _null _;
set sashelp.class;

where name='Alfred';

run,

7

Creating Macro Variables at
Execution Time using the DATA step

= SYMPUTX routine assigns macro variable values during DATA step

Macro variable
name

data null ;
set sashelp.class;
where name='Alfred';
call symputx("alfred age", age);

run;
Value to be

assigned

= Macro variable alfred age will be
assigned the value "14".

8

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

Using Macro Variable Lists to Create Michigan SAS Users Group Conference

Dynamic Data-Driven Programs

9/28/2023

Creating Macro Variables at
Execution Time using PROC SQL

= INTO clause assigns macro variable values during PROC SQL:
proc sgl noprint; Value to be
select age assigned
into :alfred age
from sashelp.class name
where name='Alfred';
quit;

= Macro variable alfred age will be
assigned the value "14".

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

9
10

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Horizontal vs. Vertical
Macro Variable Lists

= Horizontal list: a list of values in a single macro variable

%let origin list = Asia Europe USA;
= Choose your delimiter carefully:
%let origin list = Asia~Europe~USA;

= Vertical list: a separate macro variable for each item
%let originl = Asia;
%$let origin2 = Europe;
%let origin3 = USA;

= We want to create these dynamically, not by hard-coding!

11

11

Creating a Vertical Macro Variable List
Using the DATA Step

proc sort data=sashelp.cars

out=unique_origins (keep=origin) nodupkey;

by origin; 11 Zput _user_;
run: GLOBAL NUMORIGINS 3
’ GLOBAL ORIGIN1 Asia
GLOBAL ORIGIN2 Europe
data null ; GLOBAL ORIGIN3 USA

set unique_origins end=eof;
call symputx(cats('origin', n) ,origin);
if eof then call symputx('numorigins', n);

run,

12

12

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 6

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Creating a Horizontal Macro Variable List
Using the DATA Step

data null ;
set unique_origins end=eof;
length origin list $200;

retain origin_list;
origin list = catx('~',origin list,origin);
if eof then do;
call symputx('origin list',origin list);
call symputx('numorigins', n);
end;
30 Zput _user_;

run; GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia“Europe”USA

13

13

Creating a Vertical Macro Variable List
Using PROC SQL

proc sql noprint;

select distinct origin into :originl-
from sashelp.cars
order by origin;

%let numorigins = &sqlobs;
. 11 Zput _user_;
quit; GLOBAL NUMORIGINS 3
GLOBAL ORIGIN1 Asia
GLOBAL ORIGIN2 Europe

GLOBAL ORIGIN3 USA

14

14

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 7

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Creating a Horizontal Macro Variable List
Using PROC SQL

proc sql noprint;

select distinct origin
into :origin list separated by '~'
from sashelp.cars
order by origin;
%let numorigins = &sqlobs;
quit;

30 Zput _user_;
GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia”Europe”USA

15

16

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

30 Zput _user_;
GLOBAL NUMORIGINS 3
GLOBAL ORIGIN_LIST Asia“Europe”USA

Using Horizontal Macro Variable Lists

= Access individual list elements using %SCAN function:

%$scan(&origin list,1,~) > Resolvesto: Asia
%$scan(&origin list,2,~) > Resolvesto: Europe
%$scan(&origin list,3,~) > Resolvesto: USA

= Use loop counter as index for %SCAN function:

%do i = 1 %to &numorigins;
$put Item &i: %$scan(&origin_list,&i,~);
%$end;

Item 1: Asia
Item 2: Europe
Item 3: USA

17

17

Using Vertical Macro Variable Lists

= Access individual list elements using macro variable reference:

.. . . 1 Zput _user_;
&orJ_.gJ_.nl - Resolves to: Asia GLOBAL NUMBR & 1N 3
&origin3 - Resolvesto: USA GLOBAL ORIGIN2 Europe

GLOBAL ORIGIN3 USA
= Cannot use &originé&i

= Macro processor interprets this as two macro variable references:

= Macro variable origin does not exist.

18

18

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 9

Using Macro Variable Lists to Create
Dynamic Data-Driven Programs

Michigan SAS Users Group Conference
9/28/2023

Using Vertical Macro Variable Lists

" |nstead, use &&originé&i.

Original: &&originé&i
lstpass: &originl
2nd pass: Asia

= Useinaloop:

%do i = 1 %to &numorigins;
gput Item &i: &&originé&i;
$end;

19

(&& resolves to &, origin is just text, &i resolves to 1)
(resolved value of macro variable originl)

Item 1: Asia
Item 2: Europe
Item 3: USA

20

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

10

Using Macro Variable Lists to Create Michigan SAS Users Group Conference

Dynamic Data-Driven Programs

9/28/2023

Example #1:
Splitting a Data Set (1 of 2)

proc sql noprint;
select distinct origin into :originl-

from sashelp.cars;

quit;

gmacro split data; GOAL: Split SASHELP.CARS

into a separate data set for
each value of ORIGIN.

Create a vertical
$let numorigins = &sqlobs; CAEEE variable list

21

Example #1:
Splitting a Data Set (2 of 2)

data cars_&&originé&i;
set sashelp.cars;

where origin = "&&originé&i";

run; Generate a DATA step to
%end; create corresponding subset.

gmend split data;

%do i = 1 %to &numorigins; Loop through each value.

22

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

11

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Contents of "Worlk'

Example #1:
The RESUlt Cia Carpe

NOTE:

NOTE:
NOTE:

NOTE:

NOTE:
NOTE:

NOTE :

NOTE:
NOTE:

There were ISB observations read from the data set SASHELP.CARS.
WHERE origin="Asia’;

The data set WORK.CARS _ASIA has 158 observations and 15 variables.
DATA statement used (Total process time):

real time 0.10 seconds

cpu time 0.03 seconds

There were |23 observations read from the data set SASHELP.CARS.
WHERE origin='Europe’;

The data set WORK. EHRS _EUROPE has 123 observations and 15 variables.
DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.03 seconds

There were l4? ohservatluns read from the data set SASHELP.CARS.
WHERE or igin='USA

The data set WORK. CﬁHS_USﬁ has 147 observations and 15 variables.
DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

Cars_usa

23

23

Example #2:
Dynamic Report Creation (1 of 2)

gmacro graph stocks;

proc sql noprint;

select distinct stock

into :stock list separated by '~'

from sashelp.stocks;

%let numstocks = &sqglobs;

quit;

24

24

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting

12

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Example #2:
Dynamic Report Creation (2 of 2)

$do 1 = 1 %to &numstocks;

ods pdf file="%scan(&stock list,&i,~) .pdf";
proc sgplot data=sashelp.stocks;
where stock = "$scan(&stock_list,&i,~)";

highlow x=date high=high low=low;

run;
ods pdf close;
%end;

smend graph stocks;

25
25
Example #2:
The Result
1 Ml vl }Q }Q }Q
o N “ H PDF PDF PDF
z = IBM.pdf Intel.pdf Microsoftpdf
= H\M‘F £ oo s20-|
W ! ‘ \||
NS P ” ﬂ"" M |
SETESEIIE w [
Wy |
@g st “WM “N"M\M iy NH‘HM‘ MW‘ M‘l ‘Il“h“ il
h |l|‘ M\.\ W
$50 - "‘m NH
hess ses s 1o 19 s 19 a0 2002 2004 2006
26
26

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 13

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Example #3:
Comparing Multiple Data Sets (1 of 2)

$macro compare all(libl,1lib2);
proc sql noprint;

select distinct a.memname into :dsl-
from dictionary.tables a, dictionary.tables b
where a.libname = upcase("&libl")
and b.libname = upcase("&lib2")
and a.memname = b.memname and a.memtype = "DATA";

|

%let numds = &sqlobs;
quit; [

27

27

Example #3:
Comparing Multiple Data Sets (2 of 2)

$do i = 1 %$to &numds; [}

proc compare

base = &libl. . &&dsé&i

compare = &lib2..&&dsé&i;
run;
%end;

$mend compare all;

28

28

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 14

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Example #3:

The Result
S

Contents of Newdata'

Cars Class

Shoes Stocks

55

NOTE:

NOTE :
NOTE :
NOTE :

NOTE:
NOTE:
NOTE :

NOTE :
NOTE :
NOTE :

%compare_all(olddata,newdata)

PROCEDURE SQL used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

There were 428 observations read from the data set OLDDATA.CARS.
There were 428 observations read from the data set NEWDATA.CARS.

PROCEDURE COMPARE used (Total process time):
real time 0.05 seconds
cpu time 0.01 seconds

There were 19 observations read from the data set OLDDATA.CLASS.
There were 19 observations read from the data set NEWDATA.CLASS.

PROCEDURE COMPARE used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

There were 699 observations read from the data set OLDDATA.STOCKS.
There were 699 observations read from the data set NEWDATA.STOCKS.
PROCEDURE COMPARE used (Total process time):

real time 0.06 seconds

cpu time 0.03 seconds

29

29

Conclusion

= Avoid hard-coding

= Advantages:

= Easier to maintain

IC

= Macro variable lists are a powerful tool.

= Use them to build robust programs:
= Include dynamic logi

= Adapt to changes in data or computing environment

= Less likely to require change

= Greater potential for reuse

30

30

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting

15

Using Macro Variable Lists to Create Michigan SAS Users Group Conference
Dynamic Data-Driven Programs 9/28/2023

Contact Information:

Joshua M. Horstman
Nested Loop Consulting LLC
josh@nestedloopconsulting.com

31

Joshua M. Horstman
Copyright 2023 Nested Loop Consulting 16

	Slide 1: Using Macro Variable Lists to Create Dynamic Data-Driven Programs
	Slide 2: Introduction
	Slide 3: MACRO LANGUAGE REVIEW
	Slide 4: Macro Processing: A Gross Simplification
	Slide 5
	Slide 6: Creating Macro Variables using %LET
	Slide 7: Limitations of %LET
	Slide 8: Creating Macro Variables at Execution Time using the DATA step
	Slide 9: Creating Macro Variables at Execution Time using PROC SQL
	Slide 10: CREATING MACRO VARIABLE LISTS
	Slide 11: Horizontal vs. Vertical Macro Variable Lists
	Slide 12: Creating a Vertical Macro Variable List Using the DATA Step
	Slide 13: Creating a Horizontal Macro Variable List Using the DATA Step
	Slide 14: Creating a Vertical Macro Variable List Using PROC SQL
	Slide 15: Creating a Horizontal Macro Variable List Using PROC SQL
	Slide 16: USING MACRO VARIABLE LISTS
	Slide 17: Using Horizontal Macro Variable Lists
	Slide 18: Using Vertical Macro Variable Lists
	Slide 19: Using Vertical Macro Variable Lists
	Slide 20: DATA-DRIVEN PROGRAMMING EXAMPLES
	Slide 21: Example #1: Splitting a Data Set (1 of 2)
	Slide 22: Example #1: Splitting a Data Set (2 of 2)
	Slide 23: Example #1: The Result
	Slide 24: Example #2: Dynamic Report Creation (1 of 2)
	Slide 25: Example #2: Dynamic Report Creation (2 of 2)
	Slide 26: Example #2: The Result
	Slide 27: Example #3: Comparing Multiple Data Sets (1 of 2)
	Slide 28: Example #3: Comparing Multiple Data Sets (2 of 2)
	Slide 29: Example #3: The Result
	Slide 30: Conclusion
	Slide 31

