
Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 1

Using Macro Variable Lists to Create
Dynamic Data-Driven Programs

JOSHUA M. HORSTMAN

NESTED LOOP CONSULTING

SEPTEMBER 28, 2023

Introduction
▪ The term “macro variable list” refers to a way of using macro

variables, not a distinct language element.

▪ Macro variables are used to store a series of values dynamically,
typically originating from our data.

▪ Macro variable lists allow us to:
▪ Build dynamic programs

▪ Create data-driven programming logic

▪ Eliminate hard-coded data dependencies

▪ Confuse our co-workers and ensure job security!

2

1

2

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 2

MACRO LANGUAGE REVIEW
Section 1

Macro Processing: A Gross Simplification
▪ When a SAS program is submitted:
▪ Word scanner parses statements into tokens.

▪ Tokens are sent to compiler for syntax checking.

▪ Execution occurs when step boundary is reached.

▪ If the word scanner detects macro triggers (% or &):
▪ Macro elements routed to macro processor.

▪ Macro variables resolved and macro statements executed.

▪ Output from macro processor must be rescanned for
additional macro language elements.

4

3

4

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 3

5

Diagram courtesy of Art Carpenter.
Used with permission.

Creating Macro Variables using %LET
▪ Assigning a value to a macro variable:

%let output_path = C:\temp;

▪ Subsequent references to macro variable replaced with value by
macro processor:

filename myfile "&output_path\myfile.txt";

becomes

filename myfile "C:\temp\myfile.txt";

6

5

6

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 4

Limitations of %LET

7

▪ Macro processor assigns value before SAS code executes.

data _null_;

 set sashelp.class;

 where name='Alfred';

 %let alfred_age = age;

run;

▪ Macro variable alfred_age is literally assigned the value "age".

▪ SAS compiler only sees this: data _null_;
 set sashelp.class;

 where name='Alfred';

 run;

This will not have
the desired effect.

Creating Macro Variables at
Execution Time using the DATA step
▪ SYMPUTX routine assigns macro variable values during DATA step:

data _null_;

 set sashelp.class;

 where name='Alfred';

 call symputx("alfred_age",age);

run;

▪ Macro variable alfred_age will be
assigned the value "14".

8

Macro variable
name

Value to be
assigned

7

8

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 5

▪ INTO clause assigns macro variable values during PROC SQL:

proc sql noprint;

 select age

 into :alfred_age

 from sashelp.class

 where name='Alfred';

quit;

▪ Macro variable alfred_age will be
assigned the value "14".

Creating Macro Variables at
Execution Time using PROC SQL

9

Macro variable
name

Value to be
assigned

CREATING MACRO VARIABLE LISTS
Section 2

9

10

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 6

Horizontal vs. Vertical
Macro Variable Lists
▪ Horizontal list: a list of values in a single macro variable

 %let origin_list = Asia Europe USA;

▪ Choose your delimiter carefully:

 %let origin_list = Asia~Europe~USA;

▪ Vertical list: a separate macro variable for each item
%let origin1 = Asia;

%let origin2 = Europe;

%let origin3 = USA;

▪ We want to create these dynamically, not by hard-coding!

11

Creating a Vertical Macro Variable List
Using the DATA Step
proc sort data=sashelp.cars

 out=unique_origins(keep=origin) nodupkey;

 by origin;

run;

data _null_;

 set unique_origins end=eof;

 call symputx(cats('origin',_n_),origin);

 if eof then call symputx('numorigins',_n_);

run;

12

11

12

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 7

Creating a Horizontal Macro Variable List
Using the DATA Step
data _null_;

 set unique_origins end=eof;

 length origin_list $200;

 retain origin_list;

 origin_list = catx('~',origin_list,origin);

 if eof then do;

 call symputx('origin_list',origin_list);

 call symputx('numorigins',_n_);

 end;

run;

13

Creating a Vertical Macro Variable List
Using PROC SQL
proc sql noprint;

 select distinct origin into :origin1-

 from sashelp.cars

 order by origin;

 %let numorigins = &sqlobs;

quit;

14

13

14

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 8

Creating a Horizontal Macro Variable List
Using PROC SQL
proc sql noprint;

 select distinct origin

 into :origin_list separated by '~'

 from sashelp.cars

 order by origin;

 %let numorigins = &sqlobs;

quit;

15

USING MACRO VARIABLE LISTS
Section 3

15

16

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 9

Using Horizontal Macro Variable Lists
▪ Access individual list elements using %SCAN function:

%scan(&origin_list,1,~) → Resolves to: Asia
%scan(&origin_list,2,~) → Resolves to: Europe
%scan(&origin_list,3,~) → Resolves to: USA

▪ Use loop counter as index for %SCAN function:

%do i = 1 %to &numorigins;

 %put Item &i: %scan(&origin_list,&i,~);

%end;

17

Item 1: Asia

Item 2: Europe

Item 3: USA

Using Vertical Macro Variable Lists
▪ Access individual list elements using macro variable reference:

&origin1 → Resolves to: Asia
&origin2 → Resolves to: Europe
&origin3 → Resolves to: USA

▪ Cannot use &origin&i

▪ Macro processor interprets this as two macro variable references:

▪ Macro variable origin does not exist.

18

17

18

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 10

Using Vertical Macro Variable Lists
▪ Instead, use &&origin&i.

Original: &&origin&i

1st pass: &origin1 (&& resolves to &, origin is just text, &i resolves to 1)
2nd pass: Asia (resolved value of macro variable origin1)

▪ Use in a loop:

%do i = 1 %to &numorigins;

 %put Item &i: &&origin&i;

%end;

19

Item 1: Asia

Item 2: Europe

Item 3: USA

DATA-DRIVEN PROGRAMMING EXAMPLES
Section 4

19

20

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 11

Example #1:
Splitting a Data Set (1 of 2)
%macro split_data;

 proc sql noprint;

 select distinct origin into :origin1-

 from sashelp.cars;

 %let numorigins = &sqlobs;

 quit;

21

Create a vertical
macro variable list

GOAL: Split SASHELP.CARS
into a separate data set for

each value of ORIGIN.

Example #1:
Splitting a Data Set (2 of 2)
 %do i = 1 %to &numorigins;

 data cars_&&origin&i;

 set sashelp.cars;

 where origin = "&&origin&i";

 run;

 %end;

%mend split_data;

22

Loop through each value.

Generate a DATA step to
create corresponding subset.

21

22

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 12

Example #1:
The Result

23

Example #2:
Dynamic Report Creation (1 of 2)
%macro graph_stocks;

 proc sql noprint;

 select distinct stock

 into :stock_list separated by '~'

 from sashelp.stocks;

 %let numstocks = &sqlobs;

 quit;

24

GOAL: Create separate plot
for each value of STOCK in
SASHELP.STOCKS data set.

Create a horizontal
macro variable list

23

24

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 13

Example #2:
Dynamic Report Creation (2 of 2)
 %do i = 1 %to &numstocks;

 ods pdf file="%scan(&stock_list,&i,~).pdf";

 proc sgplot data=sashelp.stocks;

 where stock = "%scan(&stock_list,&i,~)";

 highlow x=date high=high low=low;

 run;

 ods pdf close;

 %end;

%mend graph_stocks;

25

Generate an SGPLOT with
ODS PDF statements for each

value in the list.

Example #2:
The Result

26

25

26

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 14

Example #3:
Comparing Multiple Data Sets (1 of 2)
%macro compare_all(lib1,lib2);

 proc sql noprint;

 select distinct a.memname into :ds1-

 from dictionary.tables a, dictionary.tables b

 where a.libname = upcase("&lib1")

 and b.libname = upcase("&lib2")

 and a.memname = b.memname and a.memtype = "DATA";

 %let numds = &sqlobs;

 quit;

27

GOAL: Compare all data sets
common to two libraries.

Create a vertical
macro variable list

Example #3:
Comparing Multiple Data Sets (2 of 2)
%do i = 1 %to &numds;

 proc compare

 base = &lib1..&&ds&i

 compare = &lib2..&&ds&i;

 run;

 %end;

%mend compare_all;

28

Generate the PROC COMPARE
for each data set in the list.

27

28

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 15

Example #3:
The Result

29

Conclusion
▪ Macro variable lists are a powerful tool.

▪ Use them to build robust programs:
▪ Include dynamic logic

▪ Avoid hard-coding

▪ Adapt to changes in data or computing environment

▪ Advantages:
▪ Less likely to require change

▪ Easier to maintain

▪ Greater potential for reuse

30

29

30

Using Macro Variable Lists to Create

Dynamic Data-Driven Programs

Michigan SAS Users Group Conference

9/28/2023

Joshua M. Horstman

Copyright 2023 Nested Loop Consulting 16

Contact Information:

Joshua M. Horstman
Nested Loop Consulting LLC

josh@nestedloopconsulting.com

31

	Slide 1: Using Macro Variable Lists to Create Dynamic Data-Driven Programs
	Slide 2: Introduction
	Slide 3: MACRO LANGUAGE REVIEW
	Slide 4: Macro Processing: A Gross Simplification
	Slide 5
	Slide 6: Creating Macro Variables using %LET
	Slide 7: Limitations of %LET
	Slide 8: Creating Macro Variables at Execution Time using the DATA step
	Slide 9: Creating Macro Variables at Execution Time using PROC SQL
	Slide 10: CREATING MACRO VARIABLE LISTS
	Slide 11: Horizontal vs. Vertical Macro Variable Lists
	Slide 12: Creating a Vertical Macro Variable List Using the DATA Step
	Slide 13: Creating a Horizontal Macro Variable List Using the DATA Step
	Slide 14: Creating a Vertical Macro Variable List Using PROC SQL
	Slide 15: Creating a Horizontal Macro Variable List Using PROC SQL
	Slide 16: USING MACRO VARIABLE LISTS
	Slide 17: Using Horizontal Macro Variable Lists
	Slide 18: Using Vertical Macro Variable Lists
	Slide 19: Using Vertical Macro Variable Lists
	Slide 20: DATA-DRIVEN PROGRAMMING EXAMPLES
	Slide 21: Example #1: Splitting a Data Set (1 of 2)
	Slide 22: Example #1: Splitting a Data Set (2 of 2)
	Slide 23: Example #1: The Result
	Slide 24: Example #2: Dynamic Report Creation (1 of 2)
	Slide 25: Example #2: Dynamic Report Creation (2 of 2)
	Slide 26: Example #2: The Result
	Slide 27: Example #3: Comparing Multiple Data Sets (1 of 2)
	Slide 28: Example #3: Comparing Multiple Data Sets (2 of 2)
	Slide 29: Example #3: The Result
	Slide 30: Conclusion
	Slide 31

