Unobserved Components Models: Applications in Post-COVID Analysis

David J Corliss, PhD is Principal Data Scientist at Grafham Analytics and the founder and Director of Peace-Work, a volunteer cooperative of statisticians and data scientists applying statistical methods to issue-driven advocacy in poverty, education, social justice, and providing analytic support for charitable groups. He writes a column on Data for Good for ASA's Amstat News and serves on the steering committee of the Statistics section of the American Association for the Advancement of Science. He holds a PhD in statistical astrophysics from the University of Toledo.

UNOBSERVED COMPONENTS MODELS: APPLICATIONS IN POST-COVID ANALYSIS

David J Corliss, Peace-Work

Southeast SAS User Group Conference Charlotte NC October 22-24, 2023

Introduction to UCM

Measuring Changes in Baseline Values

COVID Questions

Limitations of UCM

Conclusions

INTRODUCTION TO UNOBSERVED COMPONENTS MODELS

SAS® On Demand for Academics

COVID Data: A Complex Time Series

Series of Waves

More than Medical

=> Unobserved Components

Unobserved Components Models

- Model Type: State Space Time Series Model, A. Harvey 1989
- Decomposes a time series into unobserved components that together form the time series, including trends, periodic behavior, and irregular components
- Supports measurement of changes in long-term baseline values of the time series => good for modeling high-impact events
- SAS: PROC UCM, R Package: rucm

PROC UCM Source Code and Options

```
proc ucm data=seriesG;
    id date interval=month;
    model logair;
    irregular;
    level;
    slope;
    season length=12 type=trig print=smooth;
    estimate;
    forecast lead=24 print=decomp;
run;
```

- irregular, level, slope, season = potential components in the model
- id is the name of the date / time variable, interval is the time between observations
- forecast specifies the lead = number of periods in the forecast

Unobserved Components Model Results, Output and Plots

Final Estimates of the Free Parameters								
Component	Parameter	Estimate	Approx Std Error	t Value	Approx Pr > t			
Irregular	Error Variance	0.00023436	0.0001079	2.17	0.0298			
Level	Error Variance	0.00029828	0.0001057	2.82	0.0048			
Slope	Error Variance	8.47922E-13	6.2271E-10	0.00	0.9989			
Season	Error Variance	0.00000356	1.32347E-6	2.69	0.0072			

Fit Statistics Based on Residuals				
Mean Squared Error	0.00147			
Root Mean Squared Error	0.03830			
Mean Absolute Percentage Error	0.54132			
Maximum Percent Error	2.19097			
R-Square	0.99061			
Adjusted R-Square	0.99039			
Random Walk R-Square	0.87288			
Amemiya's Adjusted R-Square	0.99002			
Number of non-missing residuals used for computing the fit statistics = 131				

CHANGES IN BASELINE LEVELS WITH UCM

A UCM Classic Example: Depth of the Nile River

×

A UCM Classic Example: Depth of the Nile River

proc ucm data=nile;

```
id year interval=year;
model waterlevel;
irregular;
level plot=smooth checkbreak;
estimate;
forecast plot=decomp;
```

run;

Final Estimates of the Free Parameters							
Component	Parameter	Estimate	Approx Std Error	t Value	Approx Pr > t		
Irregular	Error Variance	15099	3145.5	4.80	<.0001		
Level	Error Variance	1469.17636	1280.4	1.15	0.2512		

Fit Statistics Based on Residuals					
Mean Squared Error	20689				
Root Mean Squared Error	143.83609				
Mean Absolute Percentage Error	13.09656				
Maximum Percent Error	32.91501				
R-Square	0.26706				
Adjusted R-Square	0.25950				
Random Walk R-Square	0.26066				
Amemiya's Adjusted R-Square	0.23684				
Number of non-missing residuals used for computing the fit statistics = 99					

A UCM Classic Example: How has the Depth Changed?

Smoothed Trend for waterlevel

A UCM Classic Example: Depth of the Nile River

```
data nile;
   set nile;
   shift1899 = ( year >= '1jan1899'd );
run;
proc ucm data=nile;
   id year interval=year;
   model waterlevel = shift1899;
```

```
id year interval=year;
model waterlevel = shift1899;
irregular;
level;
estimate;
forecast plot=decomp;
run;
```


A UCM Classic Example: How has the Depth Changed?

COVID QUESTIONS

COVID-Era Baseline Changes: Unemployment

COVID-Era Baseline Changes: COVID Mortality Rate

COVID-Era Baseline Changes: GDP

LIMITATIONS OF UCM

Limitation of UCM: Rapidly Changing Non-Periodic Behavior

Μ

Limitations of Unobserved Components Models

- This method decomposes a time series into baseline (it's called • "level"), trend ("slope", periodic ('seasonal") in irregular which is everything left. Where irregular dominates, the method isn't very informative – consider local regression
- Noisy or chaotic data often do not model well, as the components are difficult to distinguish
- Needs sufficient data in the time series following a change to the underlying behavior to accurately predict the new parameters e.g. a new baseline

Summary

- Unobserved Components models decomposes time series data into level, slope, periodic, and irregular components
- Through the use of a binary dummy variable, PROC UCM in SAS can estimate changes in baseline levels
- When changes in levels are numerous, large and irregular, UCM tends not to perform well Local Regression is a better choice
- The COVID pandemic has ended but the characteristics of the US economy have moved towards new values dissimilar from before the start of the pandemic

References

CDC / NCHS / National Vital Statistics System, US Mortality Data by Year, https://www.cdc.gov/nchs/nvss/deaths.htm

Corliss, D., "Disproportional Impact of COVID-19 on Marginalized Communities", Proc. SAS Global Forum, 2021

Federal Reserve Bank of St. Louis, GDP and Unemployment data, https://fred.stlouisfed.org/

SAS Institute, (2014), "SAS/ETS® 13.2 User's Guide, The UCM Procedure

Selukar R (2011). "State Space Modeling Using SAS". Journal of Statistical Software, 41(12), 1-13. URL http://www.jstatsoft.org/v41/i12/

Petris G, Petrone S (2011). "State Space Models in R". Journal of Statistical Software, 41(4), 1-25. URL http://www.jstatsoft.org/v41/i04/.re"

QUESTIONS?

CONTACT INFORMATION

David J Corliss, PhD Peace-Work E-mail: davidjcorliss@peace-work.org

