The book begins by telling the reader to click on SAS / Structural Equation Modeling. But, this menu item requires an add-in.

Installation is a bit confusing. After the add-in was installed, the menu looked the way the book said that it should.

JMP tech support was very helpful, just like SAS.
Contents of Book

- Linear Regression
- Path Analysis
- Confirmatory Factor Analysis
- Structural Equation Model
- Latent Growth Curve
- Single Group Analysis Window
- Model Library Window
- User Profile Window
- Properties Window
- Appendix: Frequently Asked Questions

- Book focuses on how to use JMP for SEM. It is not a textbook on SEM.
Brief Introduction to Structural Equation Modeling 1/2

- A system of linear equations based on a diagram that specifies the relationships between the variables.
- Variables can be manifest (observable X, Y) or latent (concept ξ, η).
- Exogenous → independent variables.
- Endogenous ← outcome variables.
- Latent variables inside ellipse; manifest inside rectangle.

\[\begin{align*}
X_1 & \\
X_2 & \\
X_3 & \\
X_4 & \\
\xi_1 & \quad \xi_2 \\
\eta_1 & \\
Y_1 & \quad Y_2 \quad Y_3
\end{align*} \]
Brief Introduction to Structural Equation Modeling 2/2

- Variables can be latent (depression, anxiety) or observable (temperature, voltage, height, weight).
- $X = \text{exogenous, manifest}; \ Y = \text{endogenous, manifest}.$
- $\xi \ (X_i) = \text{exogenous, latent}; \ \eta \ (\text{Eta}) = \text{endogenous, latent}.$
- $X_1 = \tau X_1 + \xi_1 \Lambda X_1 + \delta_1; \ X_2 = \tau X_2 + \xi_1 \Lambda X_2 + \delta_2.$
- $X_3 = \tau X_3 + \xi_2 \Lambda X_3 + \delta_3; \ X_4 = \tau X_4 + \xi_2 \Lambda X_4 + \delta_4.$
- $\eta = \alpha + \xi_1 \Gamma_1 + \xi_2 \Gamma_2 + \zeta.$
- $Y_1 = \tau Y_1 + \eta \Lambda Y_1 + \varepsilon_1; \ Y_2 = \tau Y_2 + \eta \Lambda Y_2 + \varepsilon_2.$
- $Y_3 = \tau Y_3 + \eta \Lambda Y_3 + \varepsilon_3.$
Ch 3, 4: Linear Regression, Drawing Diagram

- Linear regression is path analysis (SEM with manifest variables) when there is one outcome (endogenous variable).

- In real life, use Prog Reg for linear regression because least squares produces unbiased estimates and variances.

- SEM estimation by maximum likelihood. Coefficient values same as regression, but variances are biased. For large N, bias minimal.

N_Emp (Number of Employees) → -0.004 → CurrentS (Current Sales Revenue)

Advert (Amount Spent on Advertising) → 1.544** → CurrentS

LastS (Sales Revenue Last Year) → 1.057* → CurrentS
SEM diagram editor in JMP

- Model drawing in JMP is user-friendly; book is helpful guide.
- Covariances between exogenous variables in model by default, don't have to draw them like in AMOS.
- Option to display or hide covariances, error terms.
- For displaying model in presentation, I prefer to draw it in Word or Power Point with shapes, text boxes, and arrows.
Ch 5: Path Analysis (Manifest Variables Only)

- Proc Calis data=Sales method=ml outest=semEstimates;
- fitindex on(only)=[AGFI BentlerCFI ChiSq Df ProbChi nObs ProbCIFit PGFI RMSEA LL_RMSEA UL_RMSEA SRMSR];
- Path Advert <- LastS, CurrentS <- Advert, CurrentS <- LastS, LastS <- N_emp;
- Run;

Option to compare fit indices from different models.
Convergence criterion in SAS log (ABSGCONV=.00001) satisfied.

Ch 6: Confirmatory Factor Analysis, 1/3

- General Factor Equation. $Y = \tau_Y + \eta \Lambda_Y + \varepsilon$.
- $Y =$ Endogenous manifest variables, n observations, q variables.
- $\eta =$ Exogenous latent variables with mean 0, variance 1
- $\tau_Y =$ Y-intercepts, $\Lambda_Y =$ factor loadings, $\varepsilon =$ errors.
- EFA (Exploratory Factor Analysis). Proc Factor. Number of factors unknown. Hypothesis of number of factors based on scree plot, want to explain at least 70% of variance in Y by common factors.

![Scree Plot](image) ![Variance Explained](image)
Ch 6: Confirmatory Factor Analysis, 2/3

- Confirmatory Factor Analysis. Proc CALIS.
- System of equations with specific number of factors. Assess goodness of fit with indices for absolute fit (analogous to R^2), incremental fit, predictive fit, parsimony. Much wider array of indices to evaluate goodness of fit beyond % variance explained by factors.
- $Y_1 = \tau_{Y_1} + \eta_1\Lambda Y_1 + \varepsilon_1$; $Y_2 = \tau_{Y_2} + \eta_1\Lambda Y_2 + \varepsilon_2$;
- $Y_4 = \tau_{Y_4} + \eta_2\Lambda Y_4 + \varepsilon_4$; $Y_5 = \tau_{Y_5} + \eta_2\Lambda Y_5 + \varepsilon_5$.

- η_1: Depression
 - Y_1: Interview Question 1
 - Y_2: Interview Question 2
 - Y_3: Interview Question 3

- η_2: Anxiety
 - Y_4: Interview Question 4
 - Y_5: Interview Question 5

- ε_1,
- ε_2,
- ε_3,
- ε_4,
- ε_5
Example in book showed how to create latent variables and compare two models side-by-side with the comparisons tab,

How to set the correlation between factors to zero (helpful because Proc CALIS calculates covariances between factors by default, good to know how to override defaults).

How to set factor loadings to 1, but not why an analyst would want to set a factor loading to 1?

According to “Structural Equation Modeling” by David Garson (2011), pp. 63-64, each latent variable has to be assigned a metric. This can be done by constraining the latent variables to have variances of 1 or by constraining one of the factor loadings to be 1. If the factor loading from Y_i is constrained to be 1, then Y_i is the reference variable. Similar concept to having a reference group in ANOVA.
Ch 7: Structural Equation Model 1 of 3

- Proc CALIS (Covariance Analysis and Linear Structural Equations).

Variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomia67 Anomia71</td>
<td>Scores on Anomia Scale in 1967 and 1971</td>
<td>Manifest</td>
</tr>
<tr>
<td>Powerlessness67 Powerlessness71</td>
<td>Scores on Powerless Scale in 1967 and 1971</td>
<td>Manifest</td>
</tr>
<tr>
<td>Alien67 Alien71</td>
<td>Political Alienation in 1967 and 1971</td>
<td>Latent</td>
</tr>
<tr>
<td>Education</td>
<td>Years of School as of 1966</td>
<td>Manifest</td>
</tr>
<tr>
<td>SEI</td>
<td>Duncan’s Socioeconomic Scale, assessed in 1966</td>
<td>Manifest</td>
</tr>
<tr>
<td>SES</td>
<td>Socioeconomic Factor</td>
<td>Latent</td>
</tr>
</tbody>
</table>
Ch 7: Structural Equation Model 2 of 3

- Alien71 = 0.59*Alien67 – 0.24*SES + δ₁, R² = 0.50.
Author of chapter said that model had excellent fit and provided insight into the relationships among the variables.

RMSEA (Root Mean Square Error of Approximation) = 0.0231.

CFI (Bentler’s Comparative Fit Index) = 0.9979, close to 1.

High R²’s for equations implied by model.

Significant p-values for coefficients in model

Chi-Square p-value = 0.1419.

Want non-significant p-value because null hypothesis, H0, is that model’s covariance matrix equals the sample covariance matrix, \(\Sigma = S \).

Alternative hypothesis is that \(\Sigma \neq S \).
Ch 8: Latent Growth Curve 1/4

- Population average slope and intercept.
- \(Y = \text{outcome}, T = \text{Time}, i = \text{subject index}, \varepsilon = \text{error}. \)
- \(Y_i = \alpha + \beta t_i + \varepsilon_i. \) Growth pattern over time is assumed to be linear.

- Random effects allow estimation of individual growth curve for each subject.
- \(Y_i = \alpha_i + \beta_i t_i + \varepsilon_i. \)

- If 5 timepoints, estimate for subject \(i \) at time 1 is \(Y_{1i} = \alpha_i. \)
- At time 2, \(Y_{2i} = \alpha_i + \beta_i; \) at time 5, \(Y_{5i} = \alpha_i + 4\beta_i. \)
- In SEM, factors A and B function as the random intercept and slope.
Ch 8: Latent Growth Curve 2/4

- Equations for latent growth curve, in terms of factors:
 \[Y_{1i} = F_\alpha_i + \varepsilon_i, \quad Y_{2i} = F_\alpha_i + F_\beta_i t_i + \varepsilon_i; \quad Y_{3i} = F_\alpha_i + 2F_\beta_i t_i + \varepsilon_i, \]
 \[Y_{4i} = F_\alpha_i + 3F_\beta_i t_i + \varepsilon_i, \quad Y_{5i} = F_\alpha_i + 4F_\beta_i t_i + \varepsilon_i. \]

- Proc Mixed or Proc CALIS?
- Dataset, Growth contains ID, Y1-Y5.

```plaintext
ods html newfile=proc path="c:\tempfiles";  ods graphics on;
proc calis method=ml data=growth plots=residuals;
lineqs
  y1 = 0. * Intercept + f_alpha + e1,
  y2 = 0. * Intercept + f_alpha + 1 * f_beta + e2,
  y3 = 0. * Intercept + f_alpha + 2 * f_beta + e3,
  y4 = 0. * Intercept + f_alpha + 3 * f_beta + e4,
  y5 = 0. * Intercept + f_alpha + 4 * f_beta + e5;
  mean  f_alpha  f_beta;
run; ods graphics off;  ods html close;
```
Ch 8: Latent Growth Curve 3/4

- *** Proc Mixed Fixed Slope and Intercept ***;
 - ods html newfile=proc path="c:\tempfiles"; ods graphics on;
 - Proc Mixed Data=LongGrow Method=REML NOCLPRINT;
 - Class ID;
 - Model Y=TimeB/ Solution Influence(effect=ID Est);
 - Repeated / Type=UN Subject=ID R RCorr;
 - Run;
 - ods graphics off; ods html close;

- *** Proc Mixed Random Slope and Intercept ***;
 - ods html newfile=proc path="c:\tempfiles"; ods graphics on;
 - Proc Mixed Data=LongGrow Method=REML NOCLPRINT;
 - Class ID;
 - Model Y=TimeB/ Solution Influence(effect=ID Est);
 - Random Int TimeB / type=un sub=id solution;
 - Run;
 - ods graphics off; ods html close;
Estimates for population slope and intercept similar.

Advantage of Proc Mixed with random slope and intercept provides subject level estimates (see below). Other methods do not.

However, Proc CALIS provides in-depth goodness of fit indices, absolute fit (GFI), incremental fit (CFI), parsimony (RMSEA), predictive fit (SRMR).

<table>
<thead>
<tr>
<th>Method</th>
<th>F_α</th>
<th>F_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc CALIS</td>
<td>14.03</td>
<td>3.97</td>
</tr>
<tr>
<td>Proc Mixed, Population Slope And Intercent</td>
<td>14.92</td>
<td>3.93</td>
</tr>
<tr>
<td>Proc Mixed, Random Slope and Intercept</td>
<td>14.16</td>
<td>4.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>id</th>
<th>Estimate</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>2.81</td>
<td>1.49</td>
</tr>
<tr>
<td>timeb</td>
<td>1</td>
<td>0.84</td>
<td>0.51</td>
</tr>
<tr>
<td>Intercept</td>
<td>2</td>
<td>-2.13</td>
<td>1.49</td>
</tr>
<tr>
<td>timeb</td>
<td>2</td>
<td>-0.79</td>
<td>0.51</td>
</tr>
<tr>
<td>Intercept</td>
<td>3</td>
<td>-4.55</td>
<td>1.49</td>
</tr>
<tr>
<td>timeb</td>
<td>3</td>
<td>1.65</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Conclusions – Book Worth Reading

- Useful reference book for how to set up structural equation models with a graphical user interface for single group analysis.

- Helpful tool in seeing how Proc CALIS code is generated from a structural equation model diagram.

- Easy-to-follow examples of Proc CALIS.

- Shows how to set covariances to zero, how to set paths to constants, and how to add intercepts.

- Not a self-teaching book on SEM; need to learn SEM theory through other books or courses.
Contact

- Brandy R. Sinco
- Statistician and Programmer Analyst
- University of Michigan School of Social Work
- 1080 S. University St.
- Ann Arbor, MI 48109-1106
- 734-763-7784
- E-Mail: brsinco@umich.edu