How to Make a Caterpillar Plot with SAS Procs Glimmix and SGPlot (sometimes SurveySelect)

Brandy R. Sinco, BS, MA. MS

Outline

- > 1) What is a Caterpillar Plot?
- > 2) Proc Glimmix Model Syntax.
- > 3) Process Fixed and Random Effects.
- > 4) Combine Fixed and Random Effects for Each Facility.
- ➤ 5) Create the Caterpillar Plot.
- ➢ 6) When to Use Proc SurveySelect.
- ➤ 7) Closing Comments.

Caterpillar Plot

- Random effects model with facility_id as a random intercept. Capture natural variation by facility_id by including it as a random effect.
- Traditional mean is not accurate because the sum(X)/N is based on assumption that all X_i's are independent, when patients are clustered within facility.
- Also called empirical Bayesian estimate, reliability adjusted estimate, best linear unbiased predictor (BLUP).
- Equivalent to empirical Bayesian estimate if prior distribution of random effects are assumed to be normal (Robinson, 1991).

Linear Mixed Model

- Y = outcome, for which the error distribution in a regression model,
 ε, is normal.
- The equation for the linear mixed model is: $Y = X\beta + Zb + \epsilon$.
- Instead of ε ~ N(0, σ²) in linear regression, ε ~ N(0,Σ) because the residuals can be correlated in a LMM.
- ε is always a random effect; there is an estimate for each subject.
- b ~ N(0, G), where G = covariance matrix of the random effects, other than ε.
- Finally, G and Σ are assumed to be independent.
- Var(Y) = Var(Zb) + Var(ε).

Generalized Linear Mixed Model (GLMM)

- Used to model a binary or count outcome, where the error distribution is not necessarily normal. The outcome, Y, must be from an exponential family.
- Model the mean of Y as a non-linear function of (Xβ + Zb), called the link function.
- For binary Y with probability. π, use logit(π) as the link function, where logit(π) = ln(π/(1 π).
- $logit(\pi) = ln(\pi/(1 \pi) = X\beta + Zb.$
- To estimate, π , proportion of event outcome, $\pi = \exp(X\beta + Zb)/(1 + \exp(X\beta + Zb))$.

Reliability Adjusted Procedure Rate at Facilities

- π_{ii} = probability of procedure for ith woman at jth facility.
- β_0 = population average intercept for all women, all facilities.
- b_{i0} = intercept for the jth facility (also known as random intercept).
- $Logit(\pi_{ij}) = \beta_0 + b_{j0.}$
- Procedure rate at jth facility, $\pi_{ij} = \exp(\beta_0 + b_{j0}) / (1 + \exp(\beta_0 + b_{j0}))$.
- Percentages at jth facility = $100\pi_{ij} = 100\exp(\beta_0 + b_{j0}) / (1 + \exp(\beta_0 + b_{j0}))$.
- Reference: Dimick, et al, 2012. Reliability Adjustment for Reporting Hospital Outcomes With Surgery.

Use SAS Proc Glimmix to Obtain π_{ij}

ods html path="c:\temp"; ods graphics on;

/* method=quad uses Gauss-Hermite quadrature instead of default rspl */ proc glimmix data=margins_nomiss **method=quad** plots=all **NOCLPrint**;

class PUF_FACILITY_ID;

/* ReOperationN: 0 = no, -1 = yes, reference largest value 0 */
model ReOperationN = / dist=binary link=logit solution;
random int/subject=PUF_FACILITY_ID/ Solution; covtest 0;

Ods Output ParameterEstimates=ReOp_FixedEffects SolutionR=ReOp_RandEffects; /* output fixed & random effects */

run; ods graphics off; ods html close;

Glimmix Output

Fixed Effects:

Effect	Estimate	Std Err	DF	t Value	Pr > t
Intercept	-1.56	0.02	1213	-89.06	<.0001

Facility Estimates {b_{0i}}:

Subject	Estimate	Std Err Pred	DF	t Value	Pr > t
PUF_FACILITY_ID AAHNYLQGYK	-0.38	0.25	1.39E+05	-1.49	0.1371
PUF_FACILITY_ID AARCBCDTMV	-0.02	0.22	1.39E+05	-0.1	0.922
PUF_FACILITY_ID AASXTTOARC	-0.49	0.36	1.39E+05	-1.37	0.171
PUF_FACILITY_ID AAXODGTRTR	1.03	0.18	1.39E+05	5.82	<.0001

Fixed Intercept, β_0

/* Process Fixed Effect Estimates By Facility */

Data Margins_Estimates_Fixed; set ReOp_FixedEffects(keep=Effect Estimate StdErr); rename Estimate=Estimate_Fixed; rename StdErr=StdErr_Fixed; Run;

/* Store fixed intercept and standard error in macro variables */
Data _NULL_;
set Margins_Estimates_Fixed;
call symput('Estimate_Fixed_Margins',Estimate_Fixed);
call symput('StdErr_Fixed_Margins', StdErr_Fixed);
run;

Random Intercepts, b_{0i}

/* Process Random Effect Estimates by Facility */

Data Margins_Estimates_Random; set ReOp_RandEffects(keep=Subject Estimate StdErrPred); Format PUF_FACILITY_ID \$10.; rename Estimate=Estimate_Random; rename StdErrPred=StdErr_Random;

/* Retrieve Facility ID From String Functions */
SpaceLocn=Find(Subject, " ", 1);
LenSubject=LengthC(Subject);
PUF_FACILITY_ID=Substr(Subject,SpaceLocn+1, LenSubject-SpaceLocn);
Run;

Compute Reliability-Adjusted Procedure Rates

Data Margins_Estimates_Combined; Set Margins_Estimates_Random(Keep=PUF_FACILITY_ID Estimate_Random StdErr_Random);

Estimate_Fixed= &Estimate_Fixed_Margins; StdErr_Fixed= &StdErr_Fixed_Margins;

Estimate_Combined = Estimate_Fixed + Estimate_Random; StdErr_Combined = sqrt((StdErr_Random**2)+(StdErr_Fixed**2)); LCL=Estimate_Combined-(1.96*StdErr_Combined); UCL=Estimate_Combined+(1.96*StdErr_Combined);

Percent_Margins=100*exp(Estimate_Combined)/(1+exp(Estimate_Combined)); Percent_Margins_LCL=100*exp(LCL)/(1+exp(LCL)); Percent_Margins_UCL=100*exp(UCL)/(1+exp(UCL)); Run;

Caterpillar Plot

/* Randomly select 1000 of 1151 points */ proc surveyselect data=Brandy.Margins_Estimates_Combined method=srs out=Margins_Estimates_Combined seed=5062020 n=1000; run;

proc sgplot data=Margins_Estimates_Combined NoAutoLegend;

```
scatter x=PUF_FACILITY_ID y=Percent_Margins /
ERRORBARATTRS=(color=black) yerrorlower=Percent_Margins_LCL
yerrorupper=Percent_Margins_UCL
    markerattrs=(symbol=circlefilled color=blue size=12);
XAXIS label="Facility" DISPLAY=(NOVALUES) LABELATTRS=(Size=12);
yaxis grid label='% Re-Operations' values=(0 to 100 by 10)
LABELATTRS=(Size=12) VALUEATTRS=(Size=12);
run;
```


How to Create .svg (Scalable Vector Graphic for JAMA)

ods html5 options (svg_mode="inline"); ods graphics /imagefmt=svg;

proc sgplot data=Adjuvant_Estimates_Combined NoAutoLegend; scatter x=site_code y=Percent_Adjuvant / ERRORBARATTRS=(color=black) yerrorlower=Percent_Adjuvant_LCL yerrorupper=Percent_Adjuvant_UCL markerattrs=(symbol=circlefilled color=red size=12);

XAXIS label="Facility" DISPLAY=(NOVALUES) LABELATTRS=(Size=12); yaxis grid label='% Adjuvant' values=(0 to 100 by 10) LABELATTRS=(Size=12) VALUEATTRS=(Size=12);

run;

ods graphic off; ods html5 close;

References

- Robinson GK. "That BLUP is a Good Thing: The Estimation of Random Effects," Statistical science, vol. 6, no. 1, pp. 15–32, 1991.
- Dimick JB, Ghaferi AA, Osborne NH, Ko CY, Hall, BL, "Reliability adjustment for reporting hospital outcomes with surgery," Annals of surgery, vol. 255, no. 4, pp. 703–707, 2012.
- Wang T, Bredbeck BC, Sinco B, Shubeck S, Baskin B, Skolarus T., Dossett LA. Variations in Persistent Use of Low-Value Breast Cancer Surgery. JAMA Surg. Published online February 03, 2021. doi:10.1001/jamasurg.2020.6942.

Closing Comments

- SAS Proc Glimmix is used to create caterpillar plot dataset with facility id as random effect. The output from Proc Glimmix can be routed to graphics procedures, such as Proc SGPlot for caterpillar plots, histograms, box plots, and odds ratio plots.
- Proc SGPlot can easily be modified to create scalable vector graphics (.svg) files for medical journals.
- Proc SGPlot can create a caterpillar figure with the scatter command. The 95% confidence intervals can be displayed with error bars. In Proc SGPlot, need to suppress display of the facility id's with DISPLAY=(NOVALUES)
- If the data contains more than 1,000 facilities, randomly select 1,000 with Proc SurveySelect before plotting the data with Proc SGPlot. 16

Acknowledgements

- Drs. Ton Wang, Brooke Bredbeck, Sarah Shubeck, Alison Baskin, Ted Skolarus, Lesly A. Dossett.
- Dr. Wang is supported by a grant from the National Cancer Institute (NCI; T32 CA009672), Dr. Bredbeck is supported by the Ruth L. Kirschstein Research Service Award from the National Cancer Institute (NCI; T32 CA009672), Dr. Skolarus is supported by grants from the National Cancer Institute (R01 CA242559 and R37 CA222885), and Dr. Dossett is supported by a grant from the Agency for Healthcare Research and Quality (AHRQ; 5 K08 HS026030-02).

Contact Information

Brandy R. Sinco, BS, MA, MS, Statistician Senior Michigan Medicine Center for Healthcare Outcomes and Policy 2800 Plymouth Rd. Ann Arbor, MI 48109-2800

E-Mail: brsinco@med.umich.edu