Influence Statistics in Linear Regression and SAS® PROC REG

by Bruce Lund

Statistical Modeling Consultant and Trainer, Novi, MI blund_data@mi.rr.com and blund.data@gmail.com

Announcements

We'll rapidly go through first few slides
These slides will be posted to MSUG site.
I have a paper which includes explanations, examples, and math background on the topic of influence statistics for linear regression

Send me an email to receive paper.

Good reference books:

Fox, J. (2019) Regression Diagnostics An Introduction 2nd Ed (2019), Newbury Park, CA, SAGE Publishing Hamilton, L. C. (1992). Regression with Graphics, A Second Course in Applied Statistics, Belmont, CA: Wadsworth. (short but well written discussion in chapter 4)
Montgomery, D.C., Peck, E. A., Vining, G. G. (2012). Introduction to Linear Regression Analysis, fifth edition, Hoboken, NJ: Wiley. (complete discussion)

Linear Regression Model Review

A second class in statistics covers Linear Regression with multiple predictors.
Multiple predictors requires use of matrix algebra. Let's begin ...

- k predictors $\mathrm{X} 1(=1), \mathrm{X} 2, \ldots \mathrm{Xk}$ AND n cases (sample points) called $\mathrm{x} 1-\mathrm{xn}$.

The design matrix $\mathbf{X}_{\mathrm{nxk}}$ has columns $\mathrm{X} 1-\mathrm{Xk}$ - $\mathrm{X} 1=1$... the intercept "predictor".

- Each row of X is a case.
- Column matrix $Y_{n \times 1}$ is the target.
- Assume k < n
- It is assumed: $\operatorname{rank}(X)=k=\#$ of predictors

DESIGN $\mathbf{X}(k$ predictors)			
cases n	X 1	X 2	X 3
x 1			
x 2			
x 3			
x 4	-1	0	
x 5			
1	1	1	
1	0	0	
1	-1	0	

Y
1
0
2
3
1

The linear regression model is: $Y=X * \beta+\varepsilon \ldots$ where:
$\beta_{\mathrm{k} \times 1}$ is column matrix of unknown parameters ... k rows
$\varepsilon_{\mathrm{nx} 1}$ is column matrix of errors ... n rows.

Linear Regression Model $Y=X * \beta+\varepsilon \ldots$ fit by Least Squares

PROC REG computes by Least Squares:

- B ... the estimate of β

$$
B=\left(X^{\top} * X\right)^{-1} * X^{\top} * Y
$$

- \widehat{Y}... estimates / predictions of Y using the least squares formula's below:

$$
\widehat{Y}=X * B
$$

Alternatively, $\widehat{Y}=H^{*} Y$
where $H_{n \times n}=X *\left(X^{\top} * X\right)^{-1} * X^{\top}$
[John Tukey called H the hat matrix]

$$
e_{n \times 1}=(Y-\widehat{Y})=\left(Y-H^{*} Y\right)=(Y-X * B)
$$

Standard regression assumptions are made

Population Model $Y=X * \beta+\varepsilon$ assumptions:

- The ε are random variables - identically distributed with mean 0 and common σ^{2}
- The ε are independent of predictors X_{1} to X_{k} and are independent of one another.
- Either sample size is large or $\varepsilon^{\prime} \mathrm{s}$ are normal. In cases where X are random variables, then $E\left(\varepsilon \mid X_{j}\right)=0$ for all j.
where e is called the residual.
Error term: mean zero, constant variance, independent, normal

Goal of this Talk

The goal is to discuss the manner in which a sample point (y, x) influences the value of \hat{y} at x, as well as influences the overall model fit.
Potential of x_{i} to be influential depends on its position of x_{i} within the sample ... or its Leverage Leverage of x_{i} is measured by $h_{i j}$ the $i^{\text {th }}$ entry in the diagonal of H, the hat matrix

Leverage ($=h_{\mathrm{ij}}$) depends solely on the hat matrix.
In addition to leverage, the influence of (y, x) depends on whether y is an Outlier.
That is, whether y deviates extremely from the fitted model's predicted value \hat{y} at case x. It is both figurative and literal that Influence = Leverage x Outlierness INFLUENCE is measured by: LEVERAGE, RSTUDENT, COOKD, DFBETAS, STUDENT, COVRATIO, DFFITS

Leverages (BLUE) are on main diagonal ... called $h_{i i}$
We use PROC REG but GLM has similar statistics

DESIGN X (k predictors)		
X1	X2	X3
1	-1	0
1	1	1
1	0	0
1	1	0
1	-1	-1

$H=X *\left(X^{\top} * X\right)^{-1} * X^{\top}$				
0.70	0.20	0.20	-0.30	0.20
0.20	0.70	0.20	0.20	-0.30
0.20	0.20	0.20	0.20	0.20
-0.30	0.20	0.20	0.70	0.20
0.20	-0.30	0.20	0.20	0.70

Properties of H and h_{ii}

- H is $n \times n$ matrix, symmetric, $H^{*} H=H$, and each row or column of H sums to 1
- $\operatorname{Trace}(\mathrm{H})=\operatorname{Rank}(\mathrm{X})=\mathrm{k}$
- $1 / n \leq h_{\text {ii }} \leq 1$ and $-1 / 2<h_{\text {is }} \leq 1 / 2$
- If x repeats w times in X, then $1 / n \leq h \leq 1 / w$ Average h_{ij} is k / n
$\hat{y}_{i}=\sum_{s=1}^{n} h_{i s} y_{s}=h_{i i} y_{i}+\sum_{s \neq i}^{n} h_{i s} y_{s}$

X	X 1	X 2	X 3						
X 1	1	-1	0	0.68	0.24	0.18	-0.32	0.12	0.12
x 2	1	1	1	0.24	0.65	0.24	0.24	-0.18	-0.18
x 3	1	0	0	0.18	0.24	0.18	0.18	0.12	0.12
x 4	1	1	0	-0.32	0.24	0.18	0.68	0.12	0.12
x 5	1	-1	-1	0.12	-0.18	0.12	0.12	0.41	0.41
x 6	1	-1	-1	0.12	-0.18	0.12	0.12	0.41	0.41

A predicted value \hat{y}_{i} equals leverage times actual y plus other terms.

If $h_{i i}=1 / n$, then small leverage on y_{i}
If $h_{i j}$ is larger, (so $h_{\text {is }}$ are smaller, since row sum is 1), then more leverage on y_{i}

Next Slide ...

Example Dataset (see source below)

Dataset: "concord1" with 496 cases (household) of water use during 1981 in Concord, NH. Four columns used from "water":

- "Case" is the Case number (ID)
- "water81" is response or target (numeric) ... water use in 1981
- "income" is predictor (numeric in 000's)
- "retireN" is predictor ($1=$ retired, $0=$ not retired)

Reference: Regression with Graphics (1992) by L. Hamilton
Source Data: https://stats.oarc.ucla.edu/wp-content/uploads/2016/02/concord1.sas_txt

Fit a model and then look at influence statistics

$$
\text { water } 81=\mathrm{B} 1+\mathrm{B} 2 * \text { income }+\mathrm{B} 3 * \text { retireN }
$$

Compute Leverage (diagonals of Hat Matrix)

Leverage

Leads to question:
What will be the impact of Case 134 on a model?

Maybe it's OK, maybe not (So far, have not run a model)

EXCEL chart

Regression Model Fit looks Good ... But what about Case 134?

Declare good fit and stop?
But Case 134 was disturbing.

- Impact on Coefficients if Case 134 deleted?
- How does \widehat{Y} change if Case 134 is deleted?

OUTPUT OUT adds to each Case:

Parameter Estimates						
Variable	DF	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$	
Intercept	1	1462.507	149.42819	9.79	$<.0001$	
income	1	41.768	4.98923	8.37	$<.0001$	
retireN	1	-434.784	142.80327	-3.04	0.0025	

ODS OUTPUT OutputStatistics=outStats;
PROC REG DATA = concord1; ID case;
MODEL water81 = income retireN / INFLUENCE; OUTPUT OUT= outREG predicted= water81 hat cookd=COOKD student=STUDENT press=PRESS; quit; COOKD (and others)

INFLUENCE and ODS OUTPUT adds to each Case:
RESIDUAL, RSTUDENT, LEVERAGE, DFBETAS (and others)

Influence Statistics are based on "Row Deletion"
Notation: "(i)" refers to a model that is fit on data with Case i deleted $\hat{y}_{(i) s}=$ Estimate of y at Case $s . .$. for model with Case \mathbf{i} deleted Estimated error variance for the Model with Case i deleted:

$$
\hat{\sigma}_{(i)}^{2}=\sum_{s \neq \mathrm{i}}^{\mathrm{n}}\left(y_{\mathrm{s}}-\hat{y}_{(\mathrm{i}) \mathrm{s}}\right)^{2} /(n-k-1) \ldots \text { sum over all cases except Case } \mathbf{i}
$$

$\widehat{\mathrm{Y}}_{(\mathrm{i})}=\mathrm{n} \times 1$ column of estimated targets ... for model with Case \mathbf{i} deleted

RSTUDENT (a standardized residual)

A statistic based on a row deletion: In fact, all the influence statistics are computed from full model results. Here is the formula that links $\sigma_{(i)}^{2}$ to full model results:

$$
\widehat{\sigma}_{(i)}^{2}=\widehat{\sigma}^{2}(n-k) /(n-k-1)-e_{i}^{2} /\left((n-k-1)\left(1-h_{i j}\right)\right)
$$

All quantities on the RHS are found from the full model.
RSTUDENT is a t-statistic with n-k-1 d.f. ... guideline for extreme > | 3 | (But the RSTUDENT's are not independent of each other)

Plot of LEVERAGE (x-axis) v. RSTUDENT (y-axis)

- All extreme RSTUDENT are positive
- $\operatorname{PROB}($ RSTUDENT > 4) $=0.00002$
- Case 134: HIGH leverage with fairly high RSTUDENT ... examine!
- Case 68, and others ... maybe NOT influential because low leverage
What to do?
COOKD gives scaled distance between $\widehat{\mathrm{Y}}$ and $\widehat{\mathrm{Y}}_{(\mathrm{i})}$
- It shows "global" effect of deletion of Case i

Cook's D (1977)
Delete Case i and fit the model. Obtain estimates $\hat{y}_{(i) s}$ for $s=1$ to n Take square of Euclidean distance between:

$$
\widehat{\mathrm{Y}} \text { and } \widehat{\mathrm{Y}}_{(\mathrm{i})} \ldots \text { this squared distance is } \sum_{\mathrm{s}=1}^{\mathrm{n}}\left(\hat{\mathrm{y}}_{\mathrm{s}}-\hat{\mathrm{Y}}_{(\mathrm{i}) \mathrm{s}}\right)^{2}
$$

Standardize by $k \hat{\sigma}^{2} \quad\left(k=\#\right.$ predictors and $\hat{\sigma}^{2}$ variance of sample)

$$
\text { Cook's }^{D_{i}}=\sum_{s=1}^{n}\left(\hat{y}_{s}-\hat{y}_{(i) s}\right)^{2} / k \widehat{\sigma}^{2}
$$

Use COOK's D to rank cases
... high ranked COOK's D suggests ($\mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}$) has high influence.

$$
\begin{gathered}
\text { Cook's } D_{i}=h_{i i} /\left(1-h_{\mathrm{ij}}\right)^{2} \times(1 / k)\left(\mathrm{e}_{\mathrm{i}} / \widehat{\sigma}\right)^{2} \\
\text { Influence }=\text { Leverage } \times \text { Outlier }
\end{gathered}
$$

Cook's D ... Ranked

Case i	COOKD	RStudent	Leverage
134	$\mathbf{0 . 2 1 6}$	2.79	0.078
127	0.089	2.07	0.059
133	0.066	5.19	0.008
74	0.058	3.81	0.012
117	0.037	3.98	0.007
149	0.026	1.49	0.034
68	0.026	5.29	0.003
371	0.024	3.23	0.007

Based on Cook's D

- look only at Case 134
RSTUDENT
RStudent v. Leverage

Case COOKD RStudent Leverage Residual water81 income retireN
Extreme Incomes
1340.216
2.79
0.078
35619200
100
0
1270.089
2.07
0.059
26787900
90

DFBETAS $_{i}$

Belsey, D.A., Kuh, E., and Welsch, R.E., (1980)
DFBETAS i is change in B when Case i is deleted
... But then divided by a scaling factor

	DFBETAS		
Case	Intercept	income	retireN
134	-0.6243	0.7961	0.2252

abs(DFBETAS) $>2 / \operatorname{sqrt}(\mathrm{n})$ is cause for examination.
$2 / \operatorname{sqrt}(496)=0.09 \ldots$ all 3 DFBETAS are well over guide

B for Full Model	
Intercept	1462.511
income	41.768
retireN	-434.784

B(134): Model w/o Case 134	
Intercept	1555.155
income	37.823
retireN	-466.718

Change in B's	
Intercept	-92.644
income	3.945
retireN	31.934

PROC REG does not give the "Change in B's" directly.
A SAS program is needed to get "Change in B's"
... see "Extra Slides" for this code.

What is effect of deleting Case 134 on estimates?

For income ≥ 60 (1\%), the \% change in estimates v. full model exceeds 3%.
For income ≤ 8 (10\%), the \% change in estimates v. full model exceeds $|3 \%|$
Do these differences matter? This is a subject matter decision.

If YES, then consider ...

- New model with more X's
- Robust regression methods
- Transform INCOME or WATER81?
- ... or ...
- Remove Case 134

Modeler has information to decide on next steps.

Income			Estimates			
Percentile	Income	RetireN	Full	no 134	Change	\% Chy v. Full
99%	60	0	3969	3825	144	3.6%
	60	1	3534	3358	176	5.0%
75%	30	0	2716	2690	26	0.9%
	30	1	2281	2223	58	2.5%
50%	21	0	2340	2349	-10	-0.4%
	21	1	1905	1883	22	1.2%
25%	15	0	2089	2123	-33	-1.6%
	15	1	1654	1656	-2	-0.1%
10%	8	0	1797	1858	-61	-3.4%
	8	1	1362	1391	-29	-2.1%
5%	5	0	1671	1744	-73	-4.4%
	5	1	1237	1278	-41	-3.3%
1%	3	0	1588	1669	-81	-5.1%
	3	1	1153	1202	-49	-4.2%

A new scenario ... weighted regression and influence

Now suppose there are 10 households ... all with income 100 and not retired Suppose water usage is high for all 10 and the average is 9200 .

This is simply Case 134 repeated 10 times.
NEW FACT: These 10 are in a new subdivision.
There was extra water use in 1981 due to landscaping.

- Maybe the entire subdivision should be deleted?
- What is the impact on the model of deleting Case 134 (with 10 repetitions)?

Can answer the question by weighted regression with weights w.

$$
w_{134}=10, \text { else } w_{i}=1
$$

The least squares solution for the parameters B of a weighted regression is:

$$
B=\left(X^{\top *} W^{*} X\right)^{-1 *} X^{\top *} W^{*} Y \ldots \text { where is diagonal with entries } w_{i}
$$

How are the influence statistics changed?

Influence Statistics for weighted Case 134

Parameter Estimates				w	Case	COOKD (sorted)	RStudent	Leverage	DFB Intercept	DFB_ income	$\underset{\text { retireN }}{\mathrm{DFB}_{-}}$
Variable	DF	Estimate	$\mathrm{Pr}>\|\mathrm{t}\|$								
Intercept	1	1011.23	<. 0001	10	134	11.81	6.75	0.459	-4.22	6.02	1.34
income	1	60.98	<. 0001	1	74	0.04	3.39	0.010	-0.16	0.19	0.29
	1	-279.24		1	133	0.04	4.67	0.005	-0.06	0.23	-0.04
retireN	1	-279.24	0.0559	1	117	0.03	3.77	0.007	-0.04	0.05	0.26
				1	68	0.02	5.07	0.003	0.18	-0.05	-0.15

ods output OutputStatistics=outStatsx;
PROC REG DATA = concord1;
WEIGHT w; /* Do not use FREQ */ ID case;
MODEL water81 = income retireN / INFLUENCE; OUTPUT OUT = outREGx predicted $=$ water81hat cookd= COOKD student= STUDENT press= PRESS; quit;

- Regression is significant ... but
- HIGH influence for Case 134
- Estimates \widehat{Y} are much changed (but not shown)

WHAT TO DO?

- income_sq = income**2 is highly significant ... Investigate a new model ??
- delete Case 134 (all 10) and analyze separately Sensible, households are a new subdivision

Influence Statistics and Weighting

Influence Statistics with weights make sense when ...

- Survey sample with sampling weights
- True repeats as in a designed experiment
- Must average the Y's. Weight is the number of repeats
- Pseudo repeats. Group cases with very similar X's
- Must average the Y's. Weight is the number in the group

Weights are also used to correct for unequal error variances (heteroscedasticity) This is a different situation ...

Here, the weights don't represent a count or projection of cases.
However, the same influence statistics are produced,
but what do they mean?

Supplementary Slides at end of Deck

Influence Statistics in Linear Regression and SAS® PROC REG

by Bruce Lund

Statistical Modeling Consultant and Trainer, Novi, MI blund_data@mi.rr.com and blund.data@gmail.com

How weights appear in Influence Statistics

In weighted regression the coefficients are found by minimizing the weighted squared residuals $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}\left(\mathrm{e}_{\mathrm{i}}\right)^{2}$ and $\sigma^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}\right)^{2} /(\mathrm{n}-\mathrm{k})$

DATA test2;
INPUT X Y W; DATALINES;
1-1 1
111
0-1 1
011
224
;
$\widehat{\sigma}_{(i)}^{2}=\widehat{\sigma}^{2}(n-k) /(n-k-1)-e_{i}^{2} w_{i} /\left((n-k-1)\left(1-h_{i j}\right)\right)$

- $\widehat{\sigma}^{2}$ and h_{ij} are weighted
- Notice: "ei ${ }^{2} w_{i}$ " ... squared residual is weighted

Weighted hat matrix: $H_{w}=X^{*}\left(X^{\top *} W * X\right)^{-1 *} X^{\top *} W$

H_{w}				
0.136	0.136	0.182	0.182	0.364
0.136	0.136	0.182	0.182	0.364
0.182	0.182	0.409	0.409	-0.182
0.182	0.182	0.409	0.409	-0.182
0.091	0.091	-0.046	-0.046	0.909

Weight increases leverage. $\mathrm{H}_{55}=0.909$

Idempotent: $\mathrm{H}_{\mathrm{w}}{ }^{*} \mathrm{H}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}$
Projection of X onto X : $H_{w}{ }^{*} X=X$ As a result: $\mathrm{Hw}^{*} 1=1 \ldots \sum_{\mathrm{j}}^{\mathrm{n}}(\mathrm{hw})_{\mathrm{ij}}=1$
$\operatorname{Trace}\left(H_{w}\right)=\operatorname{Rank}\left(\mathrm{H}_{w}\right)=\mathrm{k}$
H_{w} not symmetric. Column sums $\sum_{\mathrm{i}}^{\mathrm{n}} \mathrm{h}_{\mathrm{ij}} \neq 1$

PROC REG gives DFBETAS but not DEBETA or $\mathrm{B}_{(\mathrm{i})}$

Annoying
PROC REG gives DFBETAS (standardized) but not the simple DFBETA (difference of B and $B_{(i)}$)
With programming and using the formula below, the DFBETA can be computed for each case:

$$
\operatorname{DFBETAS}_{(i \mathrm{ij}}=\left(\mathrm{b}_{\mathrm{j}}-\mathrm{b}_{(\mathrm{i} \mathrm{i} j}\right) /\left(\widehat{\sigma}_{(\mathrm{i})} \operatorname{sqrt}\left(\left(\mathrm{X}^{\mathrm{T} * X}\right)^{-1}{ }_{\mathrm{ijj}}\right) \ldots \text { for } \mathrm{j}=1 \text { to } \mathrm{k}\right.
$$

where $\left(X^{T *} X\right)^{-1}{ }_{\mathrm{ij}}$ is the jth entry on the diagonal of $\left(X^{\top *} X\right)^{-1}$
The plan is to multiply DFBETAS $_{(i \mathrm{ij}}$ (reported by SAS) by $\left(\widehat{\sigma}_{(\mathrm{i})} \operatorname{sqrt}\left(\left(\mathrm{X}^{T *} \mathrm{X}\right)^{-1}{ }_{\mathrm{ij}}\right)\right.$ for $\mathrm{j}=1$ to k
Needed: $\widehat{\sigma}_{(\mathrm{i})}$ and $\left(\mathrm{X}^{\mathrm{T} *} \mathrm{X}\right)^{-1}{ }_{\mathrm{ij}}$
(1) Solve for $\widehat{\sigma}_{(i)}$ in equation: RSTUDENT ${ }_{i}=e_{i} /\left(\widehat{\sigma}_{(i)}\left(1-h_{i \mathrm{i}}\right)^{1 / 2}\right) \ldots e_{i}$ and $h_{i i}$ are reported by SAS.
(2) Obtain $\left(X^{\top *} X\right)^{-1}$ from ODS OUTPUT InvXPX = InvXPX ... from PROC REG

This ODS OUTPUT requires that option I be included on the MODEL statement:
MODEL water81 = income retireN / INFLUENCE I;

SAS code is given on the next slide

Compute DFBETA with SAS program

```
ods graphics off;
ods output InvXPX = InvXPX;
ods output OutputStatistics=outStats;
PROC REG DATA = concord1;
ID case;
MODEL water81 = income retireN / INFLUENCE I;
OUTPUT OUT= outREG predicted= water81hat
cookd= COOKD student= STUDENT press= PRESS;
quit;
DATA InvXPX_diag; SET InvXPX;
keep
invXX_intercept invXX_income invXX_retireN;
retain
invXX_intercept invXX_income invXX_retireN;
if _N_ = 1 then invXX_intercept = intercept;
if N = 2 then invXX income = income;
if _N_ = 3 then invXX_retireN = retireN;
if _N_ = 3 then output;
run;
```

```
%LET keep1 =
case RESIDUAL RSTUDENT HatDiagonal DFB_intercept DFB_income DFB_retireN;
DATA DFBETA; SET OUTstats(keep=&keep1);
retain invXX_intercept invXX_income invXX_retireN;
if _N_ = 1 then SET InvXPX_diag;
SIGMA_i = RESIDUAL/(RSTUDENT * sqrt(1 - HatDiagonal));
DFBETA_intercept = DFB_intercept * SIGMA_i * sqrt(invXX_intercept);
DFBETA_income = DFB_income * SIGMA_i * sqrt(invXX_income);
DFBETA_retireN = DFB_retireN * SIGMA_i * sqrt(invXX_retireN);
run;
PROC PRINT DATA = DFBETA(obs=2);
var case DFBETA_intercept DFBETA_income DFBETA_retireN;
run;
```


Covariance Ratio

From least squares, the covariance matrix V of estimated coefficients is:

$$
V=\sigma^{2}\left(X^{T} * X\right)^{-1}
$$

Let $X_{(i)}$ be the design matrix with Case x_{i} deleted.
Assume $\mathrm{X}_{(\mathrm{i})}{ }^{\mathrm{T}} * X_{(i)}$ has rank k . Let $\mathrm{V}_{(\mathrm{i})}=\sigma_{(\mathrm{i})}^{2}\left(\mathrm{X}_{(\mathrm{i})}{ }^{\mathrm{T}} * \mathrm{X}_{(\mathrm{i})}\right)^{-1}$
COVRATIO $_{\mathrm{i}}=\operatorname{det}\left(\mathrm{V}_{(\mathrm{i})}\right) / \operatorname{det}(\mathrm{V})=\left(\hat{\sigma}_{(\mathrm{i})}^{2} / \hat{\sigma}^{2}\right)^{\mathrm{k}} \operatorname{det}\left(\left(\mathrm{X}_{(\mathrm{i})}{ }^{\mathrm{T}} * \mathrm{X}_{(\mathrm{i})}\right)^{-1}\right) / \operatorname{det}\left(\left(\mathrm{X}^{\mathrm{T}} * \mathrm{X}\right)^{-1}\right)$
With some razzle-dazzle: $\operatorname{COVRATIO}=\left(\widehat{\sigma}_{(i)}^{2} / \widehat{\sigma}^{2}\right)^{\mathrm{k}} /\left(1-\mathrm{h}_{\mathrm{ij}}\right)$
Motivation underlying COVRATIO comes from equality of absolute value of $\operatorname{det}(\mathrm{V})$ and volume of the parallelepiped spanned by the columns of V . A larger $\operatorname{det}(\mathrm{V})$ implies that the associated parallelepiped has longer sides with angles between the sides that are closer to 90 degrees instead of 0 or 180. This says that variances of coefficient estimates are larger and covariances are smaller. In this sense a large determinant $\operatorname{det}(\mathrm{V})$ indicates less precision in the estimates B. A value of COVRATIO ${ }_{i}$ not close to 1 indicates the precision of the estimates has changed substantially with deletion of case i .
Extreme influence is indicated when COVRATIO falls outside the interval ($1 \pm 3 \mathrm{k} / \mathrm{n}$)
For concord1 this range $=(0.9821 .018) \ldots$ COVRATIO $_{134}=1.041 \ldots$ outside the range.
PROC REG with MODEL / INFLUENCE reports COVRATIO.
I think DFBETA, DFBETAS, and COOK'S D are more transparent and useful.

Leverage is determined by the position of x_{i} in the sample
For $k=2$ (intercept X_{1} and predictor X_{2}) and with sample $=n$, there is this formula for the leverage points:

$$
h_{\mathrm{ii}}=1 / \mathrm{n}+\left(\mathrm{x}_{2 \mathrm{i}}-\overline{\mathrm{x}}_{2}\right)^{2} / \sum_{\mathrm{s}=1}^{\mathrm{n}}\left(\mathrm{x}_{2 \mathrm{~s}}-\overline{\mathrm{x}}_{2}\right)^{2}
$$

If $x_{2 i}$ is at the mean, then $\left(x_{2 i}-\bar{x}_{2}\right)=0$ and $h_{i i}=1 / n$

$$
\hat{y}_{i}=\sum_{s=1}^{n} h_{i s} y_{s}=y_{i} / n+\sum_{s \neq \mathrm{i}}^{n} h_{i s} y_{s}
$$

The "leverage" of $h_{i i}=1 / n$ on y_{i} is small
When x_{2} is extreme, then $h_{i j}$ is large (but ≤ 1)

$$
\hat{y}_{i}=\sum_{s=1}^{n} h_{i s} y_{i}=h_{i i} y_{i}+\sum_{s \neq \mathrm{i}}^{n} h_{i s} y_{s}
$$

The "leverage" of $h_{i i}$ on y_{i} is large

Only situation where $h_{i \mathrm{ij}}=1$

X	$X 1$	$X 2$	$X 3$	X_{D}
$x 1$	1	-1	0	0
$x 2$	1	1	1	0
$x 3$	1	0	0	0
$x 4$	1	1	0	0
$x 5$	1	-1	-1	0
$x 6$	1	-1	-1	0
x_{d}	0	0	0	1

If predictor X_{D} is zero for all rows except "d" and
X_{D} is independent of the other $X ' s$, then $h_{d d}=1$.
So, if x_{d} is exceptional, then could add dummy variable X_{D} to model ...
This makes: $h_{d d}=1$ AND $y_{d}=\hat{y}_{d}$
Regression plane at x_{d} passes thru y_{d}

$$
\text { See } H^{*} Y=\widehat{Y} \text { as shown on below }
$$

$$
\left[\begin{array}{ccc}
\cdots & \cdots & 0 \\
\cdots & \cdots & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\cdots \\
y_{d}
\end{array}\right]=\left[\begin{array}{c}
\hat{y}_{1} \\
\cdots \\
y_{d}
\end{array}\right] \text { No HAT }
$$

Variance of Residual e_{r} and STUDENT

The residual e_{r} has a distribution which depends on $\operatorname{Var}\left(\varepsilon_{r}\right)=\sigma^{2}$ and also on X via H.
Begin with the matrix formula for the residuals:
$e=(I-H)^{\star} Y \ldots$ a matrix equation with $n \times 1$ column matrices
... Now, show that $\operatorname{Var}\left(\mathrm{e}_{\mathrm{i}}\right)=\sigma^{2}\left(1-\mathrm{h}_{\mathrm{ij}}\right) \ldots$ where $\sigma^{2}=$ variance of ε_{r}
Recall that: σ^{2} is estimated by $\widehat{\sigma}^{2}=\sum_{\mathrm{s}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{s}}-\hat{\mathrm{y}}_{\mathrm{s}}\right)^{2} /(\mathrm{n}-\mathrm{k})$
The STUDENT residual for Case i is given by:

$$
\text { STUDENT }_{\mathrm{i}}=\frac{\mathrm{e}_{\mathrm{i}}}{\operatorname{sqrt}\left(\hat{\sigma}^{2}\left(1-\mathrm{h}_{\mathrm{ii}}\right)\right)}
$$

