Influence Statistics in Linear Regression and SAS® PROC REG

by Bruce Lund

Statistical Modeling Consultant and Trainer, Novi, MI blund_data@mi.rr.com and blund.data@gmail.com

Announcements

We'll rapidly go through first few slides

These slides will be posted to MSUG site.

I have a paper which includes explanations, examples, and math background on the topic of influence statistics for linear regression

Send me an email to receive paper.

Good reference books:

Fox, J. (2019) *Regression Diagnostics An Introduction 2nd Ed* (2019), Newbury Park, CA, SAGE Publishing

Hamilton, L. C. (1992). *Regression with Graphics, A Second Course in Applied Statistics*, Belmont, CA: Wadsworth. (short but well written discussion in chapter 4)

Montgomery, D.C., Peck, E. A., Vining, G. G. (2012). *Introduction to Linear Regression Analysis, fifth edition,* Hoboken, NJ: Wiley. (complete discussion)

Linear Regression Model Review

- A second class in statistics covers Linear Regression with multiple predictors. Multiple predictors requires use of matrix algebra. Let's begin ...
- k predictors X1(=1), X2, ... Xk AND n cases (sample points) called x1 xn.
 The design matrix X_{nxk} has columns X1 Xk
 - X1 = 1 ... the intercept "predictor".
- Each row of X is a case.
- Column matrix Y_{nx1} is the target.
- Assume k < n
- It is assumed: rank(X) = k = # of predictors
 This implies (X^T * X)⁻¹ exists

The linear regression model is: $Y = X^*\beta + \epsilon$... where: β_{kx1} is column matrix of unknown parameters ... k rows ϵ_{nx1} is column matrix of errors ... n rows.

	DESIGN	DESIGN X (k predictors)						
cases n	X1	X2	X3					
x1	1	-1	0					
x2	1	1	1					
x3	1	0	0					
x4	1	1	0					
x5	1	-1	-1					

Linear Regression Model Y = $X^*\beta$ + ϵ ... fit by Least Squares

PROC REG computes by Least Squares:

• B ... the estimate of β

 $B = (X^T * X)^{-1} * X^T * Y$

• \widehat{Y} ... estimates / predictions of Y using the least squares formula's below:

 $\widehat{Y} = X * B$

Alternatively, $\widehat{Y} = H * Y$ where $H_{nxn} = X * (X^T * X)^{-1} * X^T$

[John Tukey called H the hat matrix]

 $e_{nx1} = (Y - \widehat{Y}) = (Y - H^*Y) = (Y - X^*B)$ where e is called the residual. Standard regression assumptions are made

Population Model Y = $X^*\beta$ + ϵ assumptions:

- The ϵ are random variables identically distributed with mean 0 and common σ^2
- The ϵ are independent of predictors X_1 to X_K and are independent of one another.
- Either sample size is large or ε 's are normal. In cases where X are random variables, then $E(\varepsilon \mid X_j) = 0$ for all j.

Error term: mean zero, constant variance, independent, normal

Bruce Lund MSUG 2022

Goal of this Talk

The goal is to discuss the manner in which a sample point (y, x) influences the value of \hat{y} at x, as well as influences the overall model fit.

Potential of x_i to be influential depends on its position of x_i within the sample ... or its Leverage

- Leverage of x_i is measured by h_{ii} the ith entry in the diagonal of H, the hat matrix Leverage (= h_{ii}) depends solely on the hat matrix.
- In addition to leverage, the influence of (y, x) depends on whether y is an Outlier.
 - That is, whether y deviates extremely from the fitted model's predicted value \hat{y} at case x.
- It is both figurative and literal that Influence = Leverage x Outlierness

DESIGN X (k predictors)

INFLUENCE is measured by: LEVERAGE, RSTUDENT, COOKD, DFBETAS, STUDENT, COVRATIO, DFFITS

We use PROC REG
but GLM has similar
statistics

Leverages (BLUE) are on main diagonal ... called h_{ii}

$H = X * (X^T * X)^{-1} * X^T$									
0.70	0.20	0.20	-0.30	0.20					
0.20	0.70	0.20	0.20	-0.30					
0.20	0.20	0.20	0.20	0.20					
-0.30	0.20	0.20	0.70	0.20					
0.20	-0.30	0.20	0.20	0.70					
			Bruce L	und MSUG 2					

Properties of H and h_{ii}

- H is n x n matrix, symmetric, H*H = H, and each row or column of H sums to 1
- Trace(H) = Rank(X) = k
- $1/n \le h_{ii} \le 1$ and $-1/2 < h_{is} \le 1/2$

• If x repeats w times in X, then $1/n \le h \le 1/w$ Average h_{ii} is k / n

$$\hat{y}_i = \sum_{s=1}^n h_{is} y_s = h_{ii} y_i + \sum_{s\neq i}^n h_{is} y_s$$

Х	X1	X2	X3		Н						
x1	1	-1	0	0.68	0.24	0.18	-0.32	0.12	0.12		
x2	1	1	1	0.24	0.65	0.24	0.24	-0.18	-0.18		
x3	1	0	0	0.18	0.24	0.18	0.18	0.12	0.12		
x4	1	1	0	-0.32	0.24	0.18	0.68	0.12	0.12		
x5	1	-1	-1	0.12	-0.18	0.12	0.12	0.41	0.41		
x6	1	-1	-1	0.12	-0.18	0.12	0.12	0.41	0.41		

A predicted value \hat{y}_i equals leverage times actual y plus other terms.

If $h_{ii} = 1/n$, then small leverage on y_i

If h_{ii} is larger, (so h_{is} are smaller, since row sum is 1), then more leverage on y_i

Next Slide ...

Dataset: "concord1" with 496 cases (household) of water use during 1981 in Concord, NH. Four columns used from "water":

- "Case" is the Case number (ID)
- "water81" is response or target (numeric) ... water use in 1981
- "income" is predictor (numeric in 000's)
- "retireN" is predictor (1 = retired, 0 = not retired)

Reference: Regression with Graphics (1992) by L. Hamilton

Source Data: https://stats.oarc.ucla.edu/wp-content/uploads/2016/02/concord1.sas_.txt

Fit a model and then look at influence statistics water81 = B1 + B2 * income + B3 * retireN

Compute Leverage (diagonals of Hat Matrix)

Regression Model Fit looks Good ... But what about Case 134?

Declare good fit and stop?

But Case 134 was disturbing.

- Impact on Coefficients if Case 134 deleted?
- How does \widehat{Y} change if Case 134 is deleted?

OUTPUT OUT adds to each Case: COOKD (and others)

INFLUENCE and ODS OUTPUT adds to each Case: RESIDUAL, RSTUDENT, LEVERAGE, DFBETAS (and others)

	Parameter Estimates									
Variable	DF	Estimate	Std Err	t Value	Pr > t					
Intercept	1	1462.507	149.42819	9.79	<.0001					
income	1	41.768	4.98923	8.37	<.0001					
retireN	1	-434.784	142.80327	-3.04	0.0025					

ODS OUTPUT OutputStatistics=outStats; PROC REG DATA = concord1; ID case; MODEL water81 = income retireN / INFLUENCE; OUTPUT OUT= outREG predicted= water81hat cookd=COOKD student=STUDENT press=PRESS; quit;

Influence Statistics are based on "Row Deletion"

Notation: "(i)" refers to a model that is fit on data with Case i deleted $\hat{y}_{(i)s}$ = Estimate of y at Case s ... for model with Case i deleted Estimated error variance for the Model with Case i deleted: $\hat{\sigma}_{(i)}^2 = \sum_{s \neq i}^n (y_s - \hat{y}_{(i)s})^2 / (n-k-1) ...$ sum over all cases except Case i

 $\widehat{Y}_{(i)} = n \times 1$ *column* of estimated targets ... for model with Case i deleted

Next Slide ...

Bruce Lund MSUG 2022

It is not necessary to perform 496 regressions in order to compute these 496 !!! In fact, all the influence statistics are computed from full model results. Here is the formula that links $\sigma_{(i)}^2$ to full model results:

 $\hat{\sigma}_{(i)}^2 = \hat{\sigma}^2 (n-k)/(n-k-1) - e_i^2 / ((n-k-1) (1-h_{ii}))$

All quantities on the RHS are found from the full model. **RSTUDENT** is a t-statistic with n-k-1 d.f. ... guideline for extreme > | 3 | (But the RSTUDENT's are not independent of each other)

Plot of LEVERAGE (x-axis) v. RSTUDENT (y-axis)

- All extreme RSTUDENT are positive
- PROB (RSTUDENT > 4) = 0.00002
- Case 134: HIGH leverage with fairly high RSTUDENT ... examine !
- Case 68, and others ... maybe NOT influential because low leverage
- What to do?
- COOKD gives scaled distance between \widehat{Y} and $\widehat{Y}_{(\mathbf{i})}$
- It shows "global" effect of deletion of Case i

Cook's D (1977)

Delete Case i and fit the model. Obtain estimates $\hat{y}_{(i)s}$ for s=1 to n Take square of Euclidean distance between:

 \hat{Y} and $\hat{Y}_{(i)}$... this squared distance is $\sum_{s=1}^{n} (\hat{y}_{s} - \hat{y}_{(i)s})^{2}$ Standardize by k $\hat{\sigma}^{2}$ (k=# predictors and $\hat{\sigma}^{2}$ variance of sample) Cook's $D_{i} = \sum_{s=1}^{n} (\hat{y}_{s} - \hat{y}_{(i)s})^{2} / k \hat{\sigma}^{2}$

Use COOK's D to rank cases

... high ranked COOK's D suggests (y_i, x_i) has high influence.

Cook's D_i = h_{ii} / $(1 - h_{ii})^2 \times (1/k) (e_i/\hat{\sigma})^2$ Influence = Leverage x Outlier

Cook's D ... Ranked

Case i	COOKD	RStudent	Leverage
134	0.216	2.79	0.078
127	0.089	2.07	0.059
133	0.066	5.19	0.008
74	0.058	3.81	0.012
117	0.037	3.98	0.007
149	0.026	1.49	0.034
68	0.026	5.29	0.003
371	0.024	3.23	0.007

Based on Cook's D – look only at Case 134

		RStudent	<u> </u>					
134	0.216	2.79	0.078	3561	9200	100 1	0	
127	0.089	2.07	0.059	2678	7900	90	0	

Extreme Incomes

Bruce Lund MSUG 2022

DFBETAS_i Be

Belsey, D.A., Kuh, E., and Welsch, R.E., (1980)

DFBETAS	is change in]	OFBETAS					
		Case	Intercept	income	retireN				
but the	n unded D	y a scaling fa	actor	134	-0.6243	0.7961	0.2252		
	abs(DFBETAS) > 2 / sqrt(n) is cause for examination. 2 / sqrt(496) = 0.09 all 3 DFBETAS are well over guide								
B for Fu	ll Model	B (134): Mode		Cha	nge in E	3's			
Intercept	1462.511	Intercept			Interce	ot -92	.644		
income	come 41.768 income 37.823			income	3.9	945			
retireN						31.	.934		

PROC REG does not give the "Change in B's" directly. A SAS program is needed to get "Change in B's" ... see "Extra Slides" for this code.

What is effect of deleting Case 134 on estimates?

For income \geq 60 (1%), the % change in estimates v. full model exceeds 3%. For income \leq 8 (10%), the % change in estimates v. full model exceeds [3%]

A new scenario ... weighted regression and influence

Now suppose there are 10 households ... all with income 100 and not retired Suppose water usage is high for all 10 and the average is 9200.

This is simply Case 134 repeated 10 times.

NEW FACT: These 10 are in a new subdivision.

There was extra water use in 1981 due to landscaping.

- Maybe the entire subdivision should be deleted?
- What is the impact on the model of deleting Case 134 (with 10 repetitions)?

Can answer the question by weighted regression with weights w. $w_{134} = 10$, else $w_i = 1$.

The least squares solution for the parameters B of a weighted regression is:

 $B = (X^T*W*X)^{-1}*X^T*W*Y \dots$ where is diagonal with entries w_i

How are the influence statistics changed?

Influence Statistics for weighted Case 134

Parameter Estimates					Casa	COOKD	OKD RStudent		DFB_	DFB_	DFB_
Variable	DF	Estimate Pr > t		VV	Case	COOKD (sorted)	NJUUEIII	Leverage	Intercept	income	retireN
Intercept	1	1011.23	<.0001	10	134	11.81	6.75	0.459	-4.22	6.02	1.34
	1	60.98		1	74	0.04	3.39	0.010	-0.16	0.19	0.29
income	I			1	133	0.04	4.67	0.005	-0.06	0.23	-0.04
retireN	1	-279.24	0.0559	1	117	0.03	3.77	0.007	-0.04	0.05	0.26
				1	68	0.02	5.07	0.003	0.18	-0.05	-0.15

ods output OutputStatistics=outStatsx;

PROC REG DATA = concord1;

WEIGHT w; /* Do not use FREQ */ ID case;

MODEL water81 = income retireN / INFLUENCE; **OUTPUT OUT=** outREGx **predicted=** water81hat cookd= COOKD student= STUDENT press= PRESS; quit;

- Regression is significant ... but
- **HIGH** influence for Case 134
- Estimates \widehat{Y} are **much** changed (but not shown)

WHAT TO DO?

- income_sq = income**2 is highly significant ... Investigate a new model ??
- delete Case 134 (all 10) and analyze separately • Sensible, households are a new subdivision

Influence Statistics and Weighting

Influence Statistics with weights make sense when ...

- Survey sample with sampling weights
- True repeats as in a designed experiment
 - Must average the Y's. Weight is the number of repeats
- Pseudo repeats. Group cases with very similar X's
 - Must average the Y's. Weight is the number in the group

Weights are also used to correct for unequal error variances (heteroscedasticity) This is a different situation ...

Here, the weights don't represent a count or projection of cases.

However, the same influence statistics are produced,

but what do they mean?

19

Supplementary Slides at end of Deck

Bruce Lund MSUG 2022

Influence Statistics in Linear Regression and SAS® PROC REG

by Bruce Lund

Statistical Modeling Consultant and Trainer, Novi, MI blund_data@mi.rr.com and blund.data@gmail.com

How weights appear in Influence Statistics

In weighted regression the coefficients are found by minimizing the weighted squared residuals $\sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} w_i (e_i)^2$ and $\sigma^2 = \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2 / (n - k)$

DATA test2; Weighted hat matrix: $H_w = X^*(X^T*W^*X)^{-1}*X^T*W$ INPUT X Y W; Hw DATALINES; 0.182 1 -1 1 0.136 0.136 0.182 1 1 1 0.182 0.182 0.136 0.136 0 -1 1 0.409 0.182 0.182 0.409 0 1 1 0.182 0.182 0.409 0.409 2 2 4 0.091 0.091 -0.046 -0.046

0.364

0.364

-0.182

-0.182

0.909

Weight increases leverage. $H_{55} = 0.909$

 $\hat{\sigma}_{(i)}^2 = \hat{\sigma}^2 (n-k)/(n-k-1) - e_i^2 w_i / ((n-k-1) (1-h_{ii}))$

- $\hat{\sigma}^2$ and h_{ii} are weighted
- Notice: "e_i² w_i" ... squared residual is weighted

Idempotent: $H_w * H_w = H_w$ Projection of X onto X: $H_{w}^{*}X = X$ As a result: $Hw^{*1} = 1 \dots \sum_{i=1}^{n} (hw)_{ii} = 1$ $Trace(H_w) = Rank(H_w) = k$ H_w not symmetric. Column sums $\sum_{i=1}^{n} h_{ii} \neq 1$

PROC REG gives DFBETAS but not DEBETA or B_(i)

Annoying

PROC REG gives DFBETAS (standardized) but not the simple DFBETA (difference of B and $B_{(i)}$)

With programming and using the formula below, the DFBETA can be computed for each case:

DFBETAS_{(i)j} = $(b_j - b_{(i)j}) / (\hat{\sigma}_{(i)} \operatorname{sqrt}((X^T*X)^{-1}_{jj}) \dots \text{ for } j = 1 \text{ to } k$

where $(X^{T*}X)^{-1}_{ii}$ is the jth entry on the diagonal of $(X^{T*}X)^{-1}$

The plan is to multiply DFBETAS_{(i)j} (reported by SAS) by $(\hat{\sigma}_{(i)} \operatorname{sqrt}((X^{T*}X)^{-1}_{jj}))$ for j = 1 to k Needed: $\hat{\sigma}_{(i)}$ and $(X^{T*}X)^{-1}_{jj}$

(1) Solve for $\hat{\sigma}_{(i)}$ in equation: RSTUDENT_i = e_i / ($\hat{\sigma}_{(i)}$ (1 – h_{ii})^{1/2}) ... e_i and h_{ii} are reported by SAS.

(2) Obtain $(X^T*X)^{-1}$ from ODS OUTPUT InvXPX = InvXPX ... from PROC REG

This ODS OUTPUT requires that option I be included on the MODEL statement:

MODEL water81 = income retireN / INFLUENCE I;

Compute DFBETA with SAS program

```
ods graphics off;
ods output InvXPX = InvXPX;
ods output OutputStatistics=outStats;
PROC REG DATA = concord1;
ID case;
MODEL water81 = income retireN / INFLUENCE I;
OUTPUT OUT= outREG predicted= water81hat
cookd= COOKD student= STUDENT press= PRESS;
quit;
DATA InvXPX diag; SET InvXPX;
keep
invXX intercept invXX income invXX retireN;
retain
invXX intercept invXX income invXX retireN;
if N = 1 then invXX intercept = intercept;
if N = 2 then invXX income = income;
if N = 3 then invXX retireN = retireN;
if N = 3 then output;
run;
```

%LET keep1 =
case RESIDUAL RSTUDENT HatDiagonal DFB_intercept DFB_income DFB_retireN;
DATA DFBETA; SET OUTstats(keep=&keep1);
retain invXX_intercept invXX_income invXX_retireN;
if _N_ = 1 then SET InvXPX_diag;
SIGMA_i = RESIDUAL/(RSTUDENT * sqrt(1 - HatDiagonal));
DFBETA_intercept = DFB_intercept * SIGMA_i * sqrt(invXX_intercept);
DFBETA_income = DFB_income * SIGMA_i * sqrt(invXX_income);
DFBETA_retireN = DFB_retireN * SIGMA_i * sqrt(invXX_retireN);
run;
PROC PRINT DATA = DFBETA(obs=2);
var case DFBETA_intercept DFBETA_income DFBETA_retireN;
run;

Covariance Ratio

From least squares, the covariance matrix V of estimated coefficients is:

$$V = \sigma^2 (X^T * X)^{-1}$$

Let $X_{(i)}$ be the design matrix with Case x_i deleted.

Assume $X_{(i)}^{T} * X_{(i)}$ has rank k. Let $V_{(i)} = \sigma_{(i)}^{2} (X_{(i)}^{T} * X_{(i)})^{-1}$ COVRATIO_i = det(V_(i)) / det(V) = $(\widehat{\sigma}_{(i)}^{2} / \widehat{\sigma}^{2})^{k}$ det($(X_{(i)}^{T} * X_{(i)})^{-1}$) / det($(X^{T} * X)^{-1}$)

With some razzle-dazzle: COVRATIO_i = $(\hat{\sigma}_{(i)}^2 / \hat{\sigma}^2)^k / (1 - h_{ii})$

Motivation underlying COVRATIO comes from equality of absolute value of det(V) and volume of the parallelepiped spanned by the columns of V. A larger det(V) implies that the associated parallelepiped has longer sides with angles between the sides that are closer to 90 degrees instead of 0 or 180. This says that variances of coefficient estimates are larger and covariances are smaller. In this sense a large determinant det(V) indicates less precision in the estimates B. A value of COVRATIO_i not close to 1 indicates the precision of the estimates has changed substantially with deletion of case i. **Extreme influence is indicated when COVRATIO falls outside the interval (1 + 3k/n)**

For concord1 this range = $(0.982 \ 1.018)$... COVRATIO₁₃₄ = 1.041 ... outside the range.

PROC REG with MODEL / INFLUENCE reports COVRATIO.

I think DFBETA, DFBETAS, and COOK'S D are more transparent and useful.

Leverage is determined by the position of x_i in the sample

For k = 2 (intercept X₁ and predictor X₂) and with sample = n, there is this formula for the leverage points:

$$h_{ii} = 1/n + (x_{2i} - \overline{x}_2)^2 / \sum_{s=1}^n (x_{2s} - \overline{x}_2)^2$$

If x_{2i} is at the mean, then $(x_{2i} - \overline{x}_2) = 0$ and $h_{ii} = 1/n$

 $\hat{y}_i = \sum_{s=1}^n h_{is} y_s = y_i / n + \sum_{s\neq i}^n h_{is} y_s$

The "leverage" of $h_{ii} = 1/n$ on y_i is small

When x_{2i} is extreme, then h_{ii} is large (but ≤ 1)

$$\hat{\mathbf{y}}_i = \sum_{s=1}^n \mathbf{h}_{is} \mathbf{y}_i = \mathbf{h}_{ii} \mathbf{y}_i + \sum_{s\neq i}^n \mathbf{h}_{is} \mathbf{y}_s$$

The "leverage" of h_{ii} on y_i is large

Only situation where $h_{ii} = 1$

X	X1	X2	X3	X _D
x1	1	-1	0	0
x2	1	1	1	0
x3	1	0	0	0
x4	1	1	0	0
x5	1	-1	-1	0
x6	1	-1	-1	0
Xd	0	0	0	1

If predictor X_D is zero for all rows except "d" and

 X_D is independent of the other X's, then $h_{dd} = 1$.

So, if x_d is exceptional, then could add dummy variable X_D to model ...

This makes: $h_{dd} = 1 \text{ AND } y_d = \hat{y}_d$

Regression plane at x_d passes thru y_d

See H * Y = \hat{Y} as shown on below

$$\begin{bmatrix} \dots & \dots & 0 \\ \dots & \dots & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ \dots \\ y_d \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \dots \\ y_d \end{bmatrix}$$
No HAT

Variance of Residual e_r and STUDENT

The residual e_r has a distribution which depends on $Var(\epsilon_r) = \sigma^2$ and also on X via H. Begin with the matrix formula for the residuals:

e = (I - H)*Y ... a matrix equation with n x 1 column matrices

... Now, show that $Var(e_i) = \sigma^2(1 - h_{ii})$... where $\sigma^2 = variance$ of ϵ_r

Recall that: σ^2 is estimated by $\hat{\sigma}^2 = \sum_{s=1}^{n} (y_s - \hat{y}_s)^2 / (n-k)$ The STUDENT residual for Case i is given by:

 $\mathsf{STUDENT}_{\mathbf{i}} = \frac{\mathbf{e}_{\mathbf{i}}}{\mathsf{sqrt}(\widehat{\sigma}^2(1-\mathbf{h}_{\mathbf{i}\mathbf{i}}))}$

