Macromatic

A Case Study in Building a Macro

Barbara Keys, Analytic Consultant
October 24, 2013
Presented to Michigan SAS Users Group
The Task

• Build a logistic regression on all possible combinations of three independent variables
• Capture the test statistics for each combination from the test of Global Null Hypothesis
 • Likelihood Ratio
 • Score
 • Wald
The Data

- Almost 29K zip codes
- Series of demographic and aggregated vehicle percentages at a zip code level:
 - Percent of zip code with income > $100K
 - Percent of zip code owning a vehicle bought new
 - 54 in all, although only 10 are used in this presentation
 - Almost 25K unique subsets of three from a list of 54
- Model probability of a household in the zip code buying a new vehicle in a defined time period
- DV is in the form events/trials:
 - Trials = number of households in zip code
 - Events = number of households buying new vehicle in zip code
The Plan

- Do it once – write a macro-less program to accomplish one run of the task
- Turn this program into a macro (inner macro)
- Create a macro to call the inner macro repeatedly and harvest the results from each run (outer macro)
- Fine tune as needed
- Warning – memory is not your friend!
PROC LOGISTIC DATA=STUDY;
MODEL BUYCNT/HHDCNT=XRMI011 XRMI020 XRMI028;
RUN;

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>250396.743</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>252064.487</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>251579.812</td>
<td>3</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-2.5567</td>
<td>0.00617</td>
<td>171584.146</td>
<td><.0001</td>
</tr>
<tr>
<td>XRMI011</td>
<td>1</td>
<td>0.00198</td>
<td>0.000036</td>
<td>3001.9855</td>
<td><.0001</td>
</tr>
<tr>
<td>XRMI020</td>
<td>1</td>
<td>0.00443</td>
<td>0.000015</td>
<td>90998.4877</td>
<td><.0001</td>
</tr>
<tr>
<td>XRMI028</td>
<td>1</td>
<td>-0.0468</td>
<td>0.000123</td>
<td>143605.532</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Using ODS to Find Needed Output

ODS TRACE ON;
PROC LOGISTIC DATA=STUDY;
MODEL BUYCNT/HHDCNT=XRMI011 XRMI020 XRMI028;
RUN;
ODS TRACE OFF;

Output Added:

Name: GlobalTests
Label: Global Tests
Path: Logistic.GlobalTests

Using ODS to Find Output

ODS OUTPUT GLOBALTESTS=TESTS;
PROC LOGISTIC DATA=STUDY;
MODEL BUYCNT/HHDCNT=XRMI011 XRMI020 XRMI028;
RUN;
PROC PRINT DATA=TESTS;
RUN;

<table>
<thead>
<tr>
<th>Obs</th>
<th>Test</th>
<th>ChiSq</th>
<th>DF</th>
<th>Prob ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Likelihood Ratio</td>
<td>250396.743</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>2</td>
<td>Score</td>
<td>252064.487</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>3</td>
<td>Wald</td>
<td>251579.812</td>
<td>3</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Using ODS to Capture Output

DATA TESTS2(KEEP=LIKELIHOOD SCORE WALD); SET TESTS;
RETAIN LIKELIHOOD SCORE WALD;

IF _N_=1 THEN LIKELIHOOD=INPUT(CHISQ,12.3);
ELSE IF _N_=2 THEN SCORE=INPUT(CHISQ,12.3);
ELSE IF _N_=3 THEN DO;
WALD=INPUT(CHISQ,12.3);
OUTPUT;
END;

<table>
<thead>
<tr>
<th>LIKELIHOOD</th>
<th>SCORE</th>
<th>WALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>250396.74</td>
<td>252064.49</td>
<td>251579.81</td>
</tr>
</tbody>
</table>
%MACRO LOGIT(IVAR1,IVAR2,IVAR3);

ODS OUTPUT GLOBALTESTS=TESTS;

PROC LOGISTIC DATA=STUDY;
MODEL BUYCNT/HHDCNT= &IVAR1 &IVAR2 &IVAR3;
RUN;
QUIT;

DATA TESTS2(KEEP=LIKELIHOOD SCORE WALD VAR1 VAR2 VAR3);
SET TESTS;
RETAIN LIKELIHOOD SCORE WALD;

IF _N_=1 THEN LIKELIHOOD=INPUT(CHISQ,12.3);
ELSE IF _N_=2 THEN SCORE=INPUT(CHISQ,12.3);
ELSE IF _N_=3 THEN DO;
 WALD=INPUT(CHISQ,12.3);
 OUTPUT;
END;
RUN;

%MEND

%LOGIT(XRMI011,XRMI020,XRMI028)

<table>
<thead>
<tr>
<th>LIKELIHOOD</th>
<th>SCORE</th>
<th>WALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>250396.74</td>
<td>252064.49</td>
<td>251579.81</td>
</tr>
</tbody>
</table>
%MACRO LOGIT(IVAR1,IVAR2,IVAR3);

ODS OUTPUT GLOBALTESTS=TESTS;

PROC LOGISTIC DATA=STUDY;
MODEL BUYCNT/HHDCNT= &IVAR1 &IVAR2 &IVAR3;
RUN;
QUIT;

DATA TESTS2(KEEP=LIKELIHOOD SCORE WALD VAR1 VAR2 VAR3); SET TESTS;
RETAIN LIKELIHOOD SCORE WALD;
VAR1="&IVAR1";
VAR2="&IVAR2";
VAR3="&IVAR3";

IF _N_=1 THEN LIKELIHOOD=INPUT(CHISQ,12.3);
ELSE IF _N_=2 THEN SCORE=INPUT(CHISQ,12.3);
ELSE IF _N_=3 THEN DO;
WALD=INPUT(CHISQ,12.3);
OUTPUT;
END;
RUN;

%MEND

<table>
<thead>
<tr>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
<th>LIKELIHOOD</th>
<th>SCORE</th>
<th>WALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRMI011</td>
<td>XRMI020</td>
<td>XRMI028</td>
<td>250396.74</td>
<td>252064.49</td>
<td>251579.81</td>
</tr>
</tbody>
</table>

© 2013, IHS Inc. No portion of this presentation may be reproduced, reused, or otherwise distributed in any form without prior written consent.
Create a File of All Possible Combos

```
PROC FORMAT;
VALUE VLIST
1 = 'XRMI011'
2 = 'XRMI020'
3 = 'XRMI023'
4 = 'XRMI028'
5 = 'XRMI030'
6 = 'XRMI035'
7 = 'XRMI037'
8 = 'XRMI040'
9 = 'XRMI042'
10 = 'XRMI045';

DATA VCOMBO;
DO I = 1 TO 10;
  DO J = I+1 TO 10;
    DO K = J+1 TO 10;
      VAR1=PUT(I,VLIST.);
      VAR2=PUT(J,VLIST.);
      VAR3=PUT(K,VLIST.);
      KEEP VAR1 VAR2 VAR3;
      OUTPUT;
    END;
  END;
END;
RUN;
```

Format statement to translate consecutive numbers to variable names

```
Obs VAR1   VAR2   VAR3
1    XRMI011 XRMI020 XRMI023
2    XRMI011 XRMI020 XRMI028
3    XRMI011 XRMI020 XRMI030
4    XRMI011 XRMI020 XRMI035
5    XRMI011 XRMI020 XRMI037
6    XRMI011 XRMI020 XRMI040
7    XRMI011 XRMI020 XRMI042
8    XRMI011 XRMI020 XRMI045
9    XRMI011 XRMI023 XRMI028
10   XRMI011 XRMI023 XRMI030
```

DATA VCOMBO; SET VCOMBO;
CALL SYMPUT("NUMCOMB",_N_);
RUN;
```

Writes out all possible combos to a SAS dataset

Calculate how many combos and write the result to a macro variable, needed for an index counter
%MACRO RLOGIT;

FILENAME OUTLIST 'C:\AAAWORK\MISUG\LIST.TXT';
FILENAME OUTLOG 'C:\AAAWORK\MISUG\LOG.TXT';

PROC PRINTTO PRINT=OUTPUT LOG=OUTLOG NEW;
RUN;

%DO I=1 %TO &NUMCOMB;
DATA _NULL_ ; SET VCOMBO;
IF _N_=&I;
CALL SYMPUT("VAR1",VAR1);
CALL SYMPUT("VAR2",VAR2);
CALL SYMPUT("VAR3",VAR3);
RUN;

%LOGIT(&VAR1,&VAR2,&VAR3)

%IF &I=1 %THEN %DO;
DATA RESULTS; SET TESTS2;
RUN;
%END;
%ELSE %DO;
DATA RESULTS; SET RESULTS TESTS2;
RUN;
%END;
%END;
PROC PRINTTO;
RUN;
%MEND;

%RLOGIT

<table>
<thead>
<tr>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
<th>LIKELIHOOD</th>
<th>SCORE</th>
<th>WALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRM1011</td>
<td>XRM1020</td>
<td>XRM1023</td>
<td>135807.58</td>
<td>134168.84</td>
<td>133533.12</td>
</tr>
<tr>
<td>XRM1011</td>
<td>XRM1020</td>
<td>XRM1028</td>
<td>250396.74</td>
<td>252064.49</td>
<td>251579.81</td>
</tr>
<tr>
<td>XRM1011</td>
<td>XRM1020</td>
<td>XRM1030</td>
<td>105814.20</td>
<td>103977.50</td>
<td>103262.31</td>
</tr>
<tr>
<td>XRM1011</td>
<td>XRM1020</td>
<td>XRM1035</td>
<td>119180.88</td>
<td>117825.01</td>
<td>117179.07</td>
</tr>
<tr>
<td>XRM1011</td>
<td>XRM1020</td>
<td>XRM1037</td>
<td>351694.18</td>
<td>377410.89</td>
<td>370517.92</td>
</tr>
</tbody>
</table>

Set up files to hold list and log output for PROC PRINTTO

Write output from each call to a RESULTS file

Macro DO loop calls the inner macro once for every line in the file of all possible combos
It Works, but . . .

- You have to write a custom format for each job
- Filenames are hard-coded
- Dependent variable name is hard-coded
- Number of input variable is hard-coded
- Need to get results out of the SAS dataset and put them into a display format
Tackle Format Statement First

**DATA** VARS;
INPUT VNAME $;
SEQUENCE=_N_; 
CARDS;
XRMI011 
XRMI020 
etc.
;
FILENAME FMT 'C:\AAAWORK\MISUG\VFORMAT.TXT';

**DATA** _NULL_; SET VARS END=LAST; FILE FMT;
IF _N_=1 THEN DO;
PUT "PROC FORMAT;" ;
PUT "VALUE VLIST";
END;
PUT SEQUENCE "=" " VNAME ";"
IF LAST THEN DO;
PUT ";";
COMBOS=COMB(_N_,3);
CALL SYMPUT("NUMCOMB",COMBOS);
CALL SYMPUT("NUMVAR",_N_);
END;
**RUN**;

%INCLUDE FMT;

```
PROC FORMAT;
VALUE VLIST
1 = 'XRMI011 '
2 = 'XRMI020 '
3 = 'XRMI023 '
4 = 'XRMI028 '
5 = 'XRMI030 '
6 = 'XRMI035 '
7 = 'XRMI037 '
8 = 'XRMI040 '
9 = 'XRMI042 '
10 = 'XRMI045 '
;
```

The created text file:

Writes a text file containing format statement and then %INCLUDEs it

Create a SAS dataset containing only names of input variables

Stores the number of input variable and the number of resulting combos as macro variables
Additional Macro Parameters

- Pass SAS dataset names and name of dependent variable as positional parameters

```sas
%MACRO RLOGIT(VARS,SASDS,DV);
```

- VARS = name of SAS dataset containing list of inputs
- SASDS = name of SAS dataset containing model-building data
- DV = name of dependent variable

- Use %LET to pass filenames

```sas
%LET FMT=C:\AAAWORK\MISUG\VFORMAT.TXT; /* text file for formats */
%LET OUTLIST=C:\AAAWORK\MISUG\LIST.TXT; /* file to capture output window */
%LET OUTLOG=C:\AAAWORK\MISUG\LOG.TXT; /* file to capture log window */
%LET RESULTS=C:\AAAWORK\MISUG\RESULTS.HTML; /* HTML file to hold results */
```
• Add ODS commands to outer macro to display results

ODS LISTING CLOSE;
ODS HTML BODY="&RESULTS";

PROC PRINT DATA=RESULTS NOOBS;
VAR VAR1 VAR2 VAR3 LIKELIHOOD SCORE WALD;
RUN;

ODS HTML CLOSE;
ODS LISTING;
Summary of Steps

Create SAS dataset of predictors

Build format statement

Create dataset of all possible combos

Select one combo at a time and send to inner macro
  Perform logistic regression
  Capture needed stats

Receive results from inner macro and accumulate them into a dataset

Display final results in an HTML file

Black font = processing outside of macro
Red font = outer macro processing
Blue font = inner macro processing
%MACRO RLOGIT(VARS, SASDS, DV);

FILENAME FMT "&FMT";

DATA _NULL_; SET &VARS END=LAST; FILE FMT;
IF _N_=1 THEN DO;
PUT "PROC FORMAT:";
PUT "VALUE VLIST";
END;
PUT SEQUENCE "=" VNAME "=";
IF LAST THEN DO;
PUT ";";
COMBOS=COMB(_N_,3);
CALL SYMPUT("NUMCOMB",COMBOS);
CALL SYMPUT("NUMVAR","_N_");
END;
RUN;

%INCLUDE FMT;

FILENAME OUTLIST "&OUTLIST";
FILENAME OUTLOG "&OUTLOG";

PROC PRINTTO PRINT=OUTLIST LOG=OUTLOG NEW;
RUN;

DATA VCOMBO;
DO I = 1 TO &NUMVAR;
DO J = I+1 TO &NUMVAR;
DO K = J+1 TO &NUMVAR;
VAR1=PUT(I,VLIST.);
VAR2=PUT(J,VLIST.);
VAR3=PUT(K,VLIST.);
KEEP VAR1 VAR2 VAR3;
OUTPUT;
END;
END;
END;
RUN;

%DO I=1 %TO &NUMCOMB;
DATA _NULL_; SET VCOMBO;
IF _N_=&I;
CALL SYMPUT("VAR1",VAR1);
CALL SYMPUT("VAR2",VAR2);
CALL SYMPUT("VAR3",VAR3);
RUN;
%LOGIT(&VAR1,&VAR2,&VAR3)
%IF &I=1 %THEN %DO;
DATA RESULTS; SET TESTS2;
RUN;
%END;
%ELSE %DO;
DATA RESULTS; SET RESULTS TESTS2;
RUN;
%END;
%END;
PROC PRINTTO;
RUN;

ODS LISTING CLOSE;
ODS HTML BODY="&RESULTS";

PROC PRINT DATA=RESULTS NOOBS;
VAR VAR1 VAR2 VAR3 LIKELIHOOD SCORE WALD;
RUN;

ODS HTML CLOSE;
ODS LISTING;
%MEND;
%MACRO LOGIT(IVAR1,IVAR2,IVAR3);

ODS OUTPUT GLOBALTESTS=TESTS;

PROC LOGISTIC DATA=&SASDS;
MODEL &DV= &IVAR1 &IVAR2 &IVAR3;
RUN;
QUIT;

DATA TESTS2(KEEP=LIKELIHOOD SCORE WALD VAR1 VAR2 VAR3); SET TESTS;
RETAIN LIKELIHOOD SCORE WALD;
VAR1="&IVAR1";
VAR2="&IVAR2";
VAR3="&IVAR3";

IF _N_=1 THEN LIKELIHOOD=INPUT(CHISQ,12.3);
ELSE IF _N_=2 THEN SCORE=INPUT(CHISQ,12.3);
ELSE IF _N_=3 THEN DO;
   WALD=INPUT(CHISQ,12.3);
   OUTPUT;
END;
RUN;

%MEND;
Invoking the Macro

%LET FMT=C:\AAAWORK\MISUG\VFORMAT.TXT; /* text file for formats */
%LET OUTLIST=C:\AAAWORK\MISUG\LIST.TXT; /* file to capture output window */
%LET OUTLOG=C:\AAAWORK\MISUG\LOG.TXT; /* file to capture log window */
%LET RESULTS=C:\AAAWORK\MISUG\RESULTS.HTML; /* HTML file holds results */

/* MACRO PARAMETERS */
* VARS = SAS DATASET CONTAINING INDEPENDENT VARIABLE LIST;
* STUDY = SAS DATASET CONTAINING MODEL-BUILDING DATA;
* DV = NAME OF DEPENDENT VARIABLE;
%RLOGIT(VARS,MISUG.STUDY,BUYCNT/HHDCNT)
Barbara Keys

Barbara_Keys@polk.com