Survival Analysis in SAS

Abigail Smith, PhD

Michigan SAS Users Group Conference June 9, 2022

Outline

- Introduction
- Non-parametric models Kaplan-Meier
- Semi-parametric models Cox
- Checking assumptions
 - Functional form for continuous covariates
 - Proportional hazards
- Extensions of survival analysis

Introduction

- A collection of methods used to model timeto-event data
- Linear regression?
 - OLS assumptions fail survival times are not normally distributed
- Logistic regression?
 - OK in certain (limited) scenarios but censoring creates challenges

Data Structure

Participant ID	Time (Years)	Event (1=event, 0=censoring)	Covariate 1 (categorical)	Covariate 2 (continuous)
1	2.5	0	1	38
2	0.8	1	1	29
3	1.2	1	0	44
4	3	0	1	41
5	2.8	1	0	32
6	0.3	0	0	26
7	1.9	0	1	37
8	3.7	0	1	28
9	1	1	1	33
10	0.5	1	0	35

Distribution of Survival Times


```
proc univariate data=outcomes (where=(gf=1)); proc univariate data=outcomes (where=(gf=1));
var gf_timel;
var gf_timel;
histogram gf_timel/kernel;
run;
cdfplot gf_timel;
run;
```


Types of models

- Non-parametric
 - Kaplan-Meier
 - Nelson-Aalen
- Semi-parametric
 - Cox
- Parametric
 - Accelerated failure time models (exponential, Weibull, etc)

Kaplan-Meier

 Product limit estimation: calculates probability of event at each time and multiplies successive probabilities

$$\hat{S}(t) = \prod_{i:t_i < t} (\frac{n_i - d_i}{n_i})$$

- Probability of event for censored observations is distributed forward (i.e. to the right)
- Assumes censoring is independent of event times

Proc Lifetest

LIFETEST Output

Summa		Number of Ce sored Values	
Total	Failed	Censored	Percent Censored
1306	397	909	69.60

Quartile Estimates								
	Point	95% Confidence Interval						
Percent		Transform	[Lower	Upper)				
75		LOGLOG	14.9541					
50	14.9541	LOGLOG	13.6372					
25	4.5804	LOGLOG	3.4086	5.5743				

LIFETEST Plots

If exponential, should be approximately linear through the origin

If Weibull, should be approximately linear through the origin

Stratification

```
proc lifetest data=outcomes plots=(s ls lls);
strata ldlt rcx;
time gf_timel*gf(0);
run;
```


Tes	t of Equality of	over	Strata
Test	Chi-Square	DF	Pr > Chi-Square
Log-Rank	2.1390	1	0.1436
Wilcoxon	0.8259	1	0.3635
-2Log(LR)	0.3585	1	0.5493

Checking Proportional Hazards

Lines should be parallel if proportional hazards assumption is valid

Cox Proportional Hazards Models

 Semi-parametric model – no assumptions about the shape of the baseline hazard

$$\lambda(t) = \lambda_0(t)e^{x^T\beta}$$

- Key assumptions:
 - Independence of survival times
 - Multiplicative relationship between covariates and the hazard
 - Constant hazard over time

Proc Phreg

Phreg Output

Analysis of Maximum Likelihood Estimates										
Parameter		DF	Parameter Estimate		Chi- Square	Pr > ChiSq	Hazard Ratio	95% Hazard Ratio Confidence Limits		Label
LDLT_rcx	0	1	-0.09779	0.11582	0.7128	0.3985	0.907	0.723	1.138	Recipient intraop: LDLT 0
rcp_core_dgn_hcc_tx_	0	1	-0.36686	0.13773	7.0950	0.0077	0.693	0.529	0.908	Recipient at enr/list/dnr eval/pretx assess/txp: any dgn: Hepatocellular Carcinoma (HCC) (merges with Core) 0
dialysis	0	1	-0.86353	0.26876	10.3235	0.0013	0.422	0.249	0.714	dialysis 0
rcp_age_tx_rcx		1	0.01480	0.00520	8.0941	0.0044	1.015	1.005	1.025	Recipient at transplant: age
dnr_age_comb		1	0.01601	0.00398	16.1924	<.0001	1.016	1.008	1.024	
rcp_meld_tx_rcx		1	0.01672	0.00786	4.5187	0.0335	1.017	1.001	1.033	Recipient at transplant: MELD at transplant (max 40)

Phreg Survival Curve

Reference Set of Covariates for Plotting								
rcp_age_tx_rcx	dnr_age_comb	rcp_meld_tx_rcx	LDLT_rcx	rcp_core_dgn_hcc_tx_rcx	dialysis			
51.695523	37.942945	17.100649	1	1	1			

Modifying Adjusted Survival Curves

Step 1: Create dataset with reference values

```
data covs:
input LDLT rcx rcp core dgn hcc tx rcx
    dialysis rcp age tx rcx dnr age comb rcp meld tx rcx;
    datalines:
    0 0 0 50 35 17
    1 0 0 50 35 17
                                             Requests stratified plot
run;
proc phreg data = outcomes plots(overlay)=survival;
class LDLT rcx rcp core dgn hcc tx rcx dialysis;
    model gf timel*gf(0) = LDLT rcx rcp core dgn hcc tx rcx
    dialysis rcp age tx rcx dnr age comb rcp meld tx rcx/rl;
    baseline covariates=covs out=base/rowid=ldlt rcx;
run;
          Reference Dataset
                                             Stratification Variable
                        Output Dataset
```

Modifying Adjusted Survival Curves

Interaction Terms

 Interactions are used to assess effect modification, i.e. does the effect of a variable on the outcome differ by levels of a second variable

```
proc phreg data = outcomes plots=survival;
class LDLT_rcx rcp_core_dgn_hcc_tx_rcx dialysis;
    model gf_timel*gf(0) = LDLT_rcx rcp_core_dgn_hcc_tx_rcx
    dialysis rcp_age_tx_rcx|dnr_age_comb_rcp_meld_tx_rcx/rl;
    hazardratio 'Recipient Age by Donor Age' rcp_age_tx_rcx/at(dnr_age_comb=(25 35 45 50)) units=10;
run;
```


Results

					Analysis	of Maximun	n Likeliho	od Estimate	es	
Parameter		DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio			
LDLT_rcx	0	1	-0.07624	0.11612	0.4311	0.5114	0.927	0.738	1.163	
rcp_core_dgn_hcc_tx_	0	1	-0.34856	0.13757	6.4193	0.0113	0.706	0.539	0.924	
dialysis	0	1	-0.87717	0.26884	10.6456	0.0011	0.416	0.246	0.705	
rcp_age_tx_rcx		1	0.04859	0.01728	7.9030	0.0049				
dnr_age_comb		1	0.05992	0.02155	7.7339	0.0054			-	
rcp_age_t*dnr_age_co		1	-0.0008244	0.0003975	4.3025	0.0381				
rcp_meld_tx_rcx		1	0.01541	0.00786	3.8418	0.0500	1.016	1.000	1.031	

Effect of Recipient Age Across Donor Ages: Hazard Ratios for Recipient at transplant: age								
Description	Point Estimate	95% Wald Confidence Limits						
rcp_age_tx_rcx Unit=10 At dnr_age_comb=25	1.323	1.123	1.558					
rcp_age_tx_rcx Unit=10 At dnr_age_comb=35	1.218	1.087	1.365					
rcp_age_tx_rcx Unit=10 At dnr_age_comb=45	1.122	1.009	1.246					
rcp_age_tx_rcx Unit=10 At dnr_age_comb=50	1.076	0.953	1.216					

Assumption Checking – Functional Form

Method 1 – Martingale residuals

```
proc phreg data=outcomes;
model gf_timel*gf(0)=;
output out=residuals resmart=martingale;
run;

proc loess data = residuals plots=ResidualsBySmooth(smooth);
model martingale = rcp_age_tx_rcx / smooth=0.2 0.4 0.6 0.8;
run;

proc loess data = residuals plots=ResidualsBySmooth(smooth);
model martingale = rcp_meld_tx_rcx / smooth=0.2 0.4 0.6 0.8;
run;
```


Recipient Age

MELD

Assumption Checking – Functional Form

Method 1 – ASSESS statement

```
proc phreg data = outcomes ;
class LDLT_rcx rcp_core_dgn_hcc_tx_rcx dialysis/ref=first;
    model gf_timel*gf(0) = LDLT_rcx rcp_core_dgn_hcc_tx_rcx
    dialysis rcp_age_tx_rcx dnr_age_comb rcp_meld_tx_rcx/rl;
    assess var=(rcp_age_tx_rcx dnr_age_comb rcp_meld_tx_rcx)/resample;
run;
```

Supremum Test for Functional Form								
Variable	Maximum Absolute Value	Replications	Seed	Pr > MaxAbsVal				
rcp_age_tx_rcx	14.9069	1000	677662574	0.2540				
dnr_age_comb	9.7880	1000	677662574	0.7750				
rcp_meld_tx_rcx	8.8101	1000	677662574	0.6960				

Recipient Age

MELD

Recipient Age – Non-linear

```
proc phreg data = outcomes ;
class LDLT_rcx rcp_core_dgn_hcc_tx_rcx dialysis/ref=first;
  model gf_timel*gf(0) = LDLT_rcx rcp_core_dgn_hcc_tx_rcx
  dialysis rcp_age_tx_rcx|rcp_age_tx_rcx dnr_age_comb_rcp_meld_tx_rcx/rl;
  assess var=(rcp_age_tx_rcx_dnr_age_comb_rcp_meld_tx_rcx)/resample;
```

run; Linear Checking Functional Form for rcp_age_tx_rcx Observed Path and First 20 Simulated Paths 10 Sumulative Martingale Residuals -10 Pr > MaxAbsVal: 0.2540 (1000 Simulations) -20 20 40 80 Recipient at transplant: age

Assumption Checking – Proportional Hazards

- Interactions with time
- Schoenfeld residuals
- Assess statement

Interactions with Time

```
proc phreg data = outcomes ;
    model gf_timel*gf(0) = LDLT_rcx LDLT_rcx time rcp_core_dgn_hcc_tx_rcx
    dialysis rcp age tx rcx dnr age comb rcp_meld_tx_rcx/rl;
    LDLT_rcx_time=LDLT_rcx*gf_timel;
run;
```

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	95% Hazar Confide Limi	ence	Label	
LDLT rcx	1	0.17486	0.15089	1.3428	0.2465	1.191	0.886	1.601	Recipient intraop: LDLT	
LDLT_rcx_time	1	-0.02710	0.03377	0.6441	0.4222	0.973	0.911	1.040		
rcp_core_dgn_hcc_tx_	1	0.36670	0.13772	7.0901	0.0078	1.443	1.102	1.890	Recipient at enr/list/dnr eval/pretx assess/txp: any dgn: Hepatocellular Carcinoma (HCC) (merges with Core)	
dialysis	1	0.87280	0.26899	10.5279	0.0012	2.394	1.413	4.055		
rcp_age_tx_rcx	1	0.01473	0.00520	8.0225	0.0046	1.015	1.005	1.025	Recipient at transplant: age	
dnr_age_comb	1	0.01603	0.00398	16.2343	<.0001	1.016	1.008	1.024		
rcp_meld_tx_rcx	1	0.01659	0.00787	4.4429	0.0350	1.017	1.001	1.033	Recipient at transplant: MELD at transplant (max 40)	

Schoenfeld Residuals

```
proc phreg data = outcomes ;
    class LDLT_rcx rcp_core_dgn_hcc_tx_rcx dialysis/ref=first;
    model gf_timel*gf(0) = LDLT_rcx rcp_core_dgn_hcc_tx_rcx
    dialysis rcp_age_tx_rcx_dnr_age_comb rcp_meld_tx_rcx/rl;
    output out=schoen ressch=_ALL__;
run;
```

```
proc loess data = schoen;

model ressch_LDLT_rcxl=gf_timel / smooth=(0.2 0.4 0.6 0.8); model ressch_dnr_age_comb=gf_timel / smooth=(0.2 0.4 0.6 0.8);

run;

run;
```


Assess Statement

Dealing with non-proportional hazards

- Stratification
 - Cannot estimate hazard ratio directly but can assess interactions
- Interactions with time
 - Important to assess functional form of time
- Use shorter time intervals
 - PH may hold for certain intervals of time

Extensions of Survival Analysis

- Time-dependent covariates
 - E.g. time-varying lab values
- Recurrent events
 - E.g. infection, hospitalization

Thank you! Questions?

Abigail.Smith@ArborResearch.org

